京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析师
假设(hypothesis),又称统计假设,是对总体参数的具体数值所作的陈述。假设检验(hypothesis test) 是先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。
假设检验的特点就是采用逻辑上的反证法和依据统计上 的小概率原理。小概率事件在单独一次的试验中基本上不会发生,可以不予考虑。在假设检验中,我们做出判断时所依据的逻辑是:如果在原假设正确的前提下,检验统计量的样本观测值的出现属于小概率事件,那么可以认为原假设不可信,从而否定它,转而接受备择假设。
一个完整的假设检验过程,包括以下几个步骤:
(1)提出假设;
(2)构造适当的检验统计量,并根据样本计算统计量的具体数值;
(3)规定显著性水平,建立检验规则;
(4)做出判断。
(1)对陈述正确性的检验
在这种情况下,原假设通常是基于假定的陈述是正确的。然后建立备择假设,为拒绝提供统计证据,从而证明这个假定的陈述是错误的。
(2)对研究性假设的检验
在研究性假设检验的调查研究中,应该建立原假设和备择假设,并用备择假设来表示研究性假设,这样如果拒绝,将支持样本所得出的结论以及应该采取某些行动。
(3)对决策情况下的检验
在决策情况下的检验研究中,决策者必须从两种措施中挑选其中一种,无论是接受还是拒绝,都必须采取一定的措施。
(1)P值规则
所谓P值,实际上是检验统计量超过(大于或小于)具体样本观测值的概率。如果P值小于所给定的显著性水平,则认为原假设不太可能成立;如果P值大于所给定的标准,则认为没有充分的证据否定原假设。
(2)临界值规则
假设检验中,还有另外一种做出结论的方法:根据所提出的显著性水平标准(它是概率密度曲线的尾部面积)查表得到相应的检验统计量的数值,称作临界值,直接用检验统计量的观测值与临界值作比较,观测值落在临界值所划定的尾部(称之为拒绝域)内,便拒绝原假设;观测值落在临界值所划定的尾部之外(称之为不能拒绝域)的范围内,则认为拒绝原假设的证据不足。这种做出检验结论的方法,我们称之为临界值规则。
•第Ⅰ类错误 (type Ⅰ error)
又称弃真错误,当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率通常记为α 。
•第Ⅱ类错误(type Ⅱ error)
又称取伪错误,当原假设为假时没有拒绝原假设。犯第Ⅱ类错误的概率通常记为β。
在统计实践中,进行假设检验时一般先控制第Ⅰ类错误发生的概率,并确定犯第Ⅰ类错误的概率最大值,称为检验的显著性水平。在样本容量n不变的条件下,犯两类错误的概率常常呈现反向的变化,要使α和β 都同时减小,除非增加样本的容量。因此,统计学家奈曼与皮尔逊提出了一个原则:即在控制犯第一类错误的概率情况下,尽量使犯第二类错误的概率小。
在实际问题中,我们往往把要否定的陈述作为原假设,而把拟采纳的陈述本身作为备择假设,只对犯第一类错误的概率加以限制,而不考虑犯第二类错误的概率。
(1)双侧检验
双侧检验属于决策中的假设检验。也就是说,不论是拒绝H0,还是接受H1 ,都必需采取相应的行动措施。
(2)单侧检验
单侧检验又可分两种形式:
a、检验研究中的假设
将所研究的假设作为备择假设H1,将认为研究结果是无效的说法或理论作为原假设H0。或者说,把希望(想要)证明的假设作为备择假设。再做这类假设检验时应先确立备择假设H1。
b、检验某项声明的有效性
将所作出的说明(声明)作为原假设,对该说明的质疑作为备择假设,在做这类单侧检验时,应先确立原假设H0。除非我们有证据表明“声明”无效,否则就应认为该“声明”是有效的。
以均值为例进行如下分析分析,看适合哪种检验。
以均值差为例进行如下分析分析,看适合哪种检验。
以上就是我总结的假设检验的内容,希望能对你的知识梳理起到帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21