京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Kathleen Walch编译 | CDA数据分析师
当在工作环境中被引用时,人工智能带来了混合的情感和观点。如果您向同事,朋友或陌生人问“您认为人工智能会成为网络杀手或网络创造者吗?”的问题,您必然会在此问题上获得非常强烈的意见。可以肯定的是,您会听到一系列有趣且相互矛盾的观点,范围从“人工智能将摧毁我们所知道的所有工作”到“人工智能将使我们能够更好地工作并做我们从未能够做的新事情”。
如果您查看各种经济和分析师预测,那么它们的评估无处不在,从大多数经济部门的巨大工作机会流失到由于工作生产率的显着提高而带来的大量就业增长。当然,与所有内容一样,真正的答案将在中间。毫无疑问,人工智能将消除对许多不同类别的许多不同种类工作的需求。但与此同时,人工智能将在我们已知的类别中创建新的工作,并且在尚未创建的类别中还会创建更多的工作。
盖洛普(Gallup)从2018年开始的民意测验显示,许多人认为AI会破坏工作,但不会破坏他们的工作。实际上,在该民意调查中,超过73%的美国人认为AI将成为净工作岗位破坏者,但在这些接受调查的成年人中,只有23%的人对此感到担忧。您如何调和这两个职位?在同一项调查中,超过90%的受访者认为AI会摧毁至少一半的工作,但91%的受访者认为这不会影响他们的就业。一般人的普遍共识是,人工智能将继续推动自动化和技术的无阻碍发展,从而带来更高水平的生产力。企业将能够利用其现有资源做更多的事情,或者可能用更少的资源做更多的事情,这些资源主要是人工和与之相关的成本。
自动化已经被公司采用了数十年,但是自动化并不是智能,并且毫无疑问,在公司使用的技术中增加更多的认知能力将使组织重新考虑其对人工劳动的使用方式中心运营,仓库活动,卡车运输,实体零售,甚至采矿,石油和天然气活动。许多人认为,失业不会在薪资表的顶部或底部出现,而是在中部出现。人将减少管理,而机器和AI同事将进行更多管理。这些中等收入工作在美国人口中所占的比例很高,因此无疑将对工作和劳动力产生影响。
劳工与统计局(Bureau of Labor&Statistics)于2017年发布的报告称,大多数就业岗位是零售,专业服务,医疗保健和政府部门。毫不奇怪,人工智能可能会减少零售,政府和专业服务工作的一部分。实际上,在需要人工劳动的地区,将纸张或零碎的东西从一个地方移到另一个地方,已经进行了劳动力调整。这些高度重复,监管密集且容易出错的流程作业已被计算机系统取代。当计算机能够完成同样出色的工作时,尤其是具有理解信息的含义和上下文的能力时,为什么人们会四处移动信息?此外,尽管我们仍处于自动驾驶汽车的起步阶段(甚至很危险),毫无疑问,运输,仓库和物流行业的未来方向正在迅速走向自治。在美国许多州,按类别划分的雇佣人数最多的卡车驾驶者无疑将成为未来的危险职业。
从早期工业革命的自动织布机到当今的计算机,每一波技术的争论都认为工作并没有被破坏,而是随着创造了全新的就业类别,就业从一个地方转移到了另一个地方。路德主义者可能是为了抗议机器式自动化而破坏了工厂,但今天,这些工人将捍卫制造业以防止这些工作的消失。实际上,如果您回头看得很远,您会发现从制造转向专业服务的趋势是在第二次世界大战之后以及全球化势不可挡的情况下开始的。
1910年,制造业,运输业,零售业和家庭服务业是主要的雇主。诸如洗衣机,洗碗机,微波炉和炉灶面/炉灶之类的发明终止了作为主要雇主的家庭服务。但是,美国并没有经历过大规模的失业浪潮,因为我们在专业服务领域发明了整个经济新的主要部门,而在1910年几乎没有这个类别。同样,从1978年开始,主要类别的主要雇主的发展也发生了重大变化,秘书是员工类型中最大的类别。随之而来的是计算机,还有打字机,文件柜和负责管理人员调度的人员。
此外,即使是超级认知的AI系统也不会相对影响很多类别的就业。政府,医疗保健,教育,休闲和款待以及许多专业服务类别(尤其是房地产)将继续成为主要雇主,即使将AI添加到这些行业中,仍然需要人类,但他们只会做得更好,对其他人类的需求更敏感,而不是取代他们。毕竟,没有什么比政府或在旅馆里闲逛更人性化了。只要有人,我们就会有政府,老师,医生和小屋。即使在机器人技术产生了重大影响的领域,我们也看到了令人困惑的矛盾。
真正的工作创造者将是我们甚至无法想到的全新的工作类别。如果您时光倒流20或30年,并告诉某人他们将担任社交媒体营销商,那么他们将不知道您在说什么。同样,如果您前进20到30年,那么整个经济领域和主要雇主将是今天所无法实现的。昨天的制造商是今天的程序员。昨天的秘书是今天的数据库管理员。昨天的挤奶者是今天的优步司机。确实,并不是创造或破坏了工作,而是整个工作类别都消失了,而新的职位已经取代了。
人们很难想象要出现什么样的新工作和新领域。由于我们只能如实地预见明天会发生什么,而很难想象未来会发生什么,因此我们有限的人类思维使我们无法确定净影响将是负面的。但是事实并非如此。
毫无疑问,将有新类别的工作直接与创建具有AI功能的功能相关,无论是软件形式还是硬件形式。但是,没有人可以争辩说,这些工作中的任何一个都可以弥补使用这些产品所导致的工人数量的减少。数据科学家,机器人工程师和ML程序员不会弥补卡车司机或呼叫中心工作人员的减少。相反,创造将是我们最不期望的地方。是否会有全新的专业服务类别,而如果不使用高级智能作为助手,这是不可能的?我们是否会看到由智能助手和第三方服务推动的大量自雇浪潮,这些人将个人变成了一家重要的大型公司?
毫无疑问,随着我们从一个工业化时代转移到另一个工业时代,世界经济正在发生革命性转变,这一点在业内被许多人称为工业4.0。每个工业化浪潮之间的过渡不一定都是干净的。如果在淘汰旧的工作类别之前未创建新的工作类别,则过渡可能会很麻烦。但是,很明显,我们已经开始进行过渡,现在拭目以待的是,随着正在开发的新功能的发展,未来将如何发展。只有时间会告诉我们将出现哪些新工作,哪些将会消失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15