
作者 | Kathleen Walch编译 | CDA数据分析师
当在工作环境中被引用时,人工智能带来了混合的情感和观点。如果您向同事,朋友或陌生人问“您认为人工智能会成为网络杀手或网络创造者吗?”的问题,您必然会在此问题上获得非常强烈的意见。可以肯定的是,您会听到一系列有趣且相互矛盾的观点,范围从“人工智能将摧毁我们所知道的所有工作”到“人工智能将使我们能够更好地工作并做我们从未能够做的新事情”。
如果您查看各种经济和分析师预测,那么它们的评估无处不在,从大多数经济部门的巨大工作机会流失到由于工作生产率的显着提高而带来的大量就业增长。当然,与所有内容一样,真正的答案将在中间。毫无疑问,人工智能将消除对许多不同类别的许多不同种类工作的需求。但与此同时,人工智能将在我们已知的类别中创建新的工作,并且在尚未创建的类别中还会创建更多的工作。
盖洛普(Gallup)从2018年开始的民意测验显示,许多人认为AI会破坏工作,但不会破坏他们的工作。实际上,在该民意调查中,超过73%的美国人认为AI将成为净工作岗位破坏者,但在这些接受调查的成年人中,只有23%的人对此感到担忧。您如何调和这两个职位?在同一项调查中,超过90%的受访者认为AI会摧毁至少一半的工作,但91%的受访者认为这不会影响他们的就业。一般人的普遍共识是,人工智能将继续推动自动化和技术的无阻碍发展,从而带来更高水平的生产力。企业将能够利用其现有资源做更多的事情,或者可能用更少的资源做更多的事情,这些资源主要是人工和与之相关的成本。
自动化已经被公司采用了数十年,但是自动化并不是智能,并且毫无疑问,在公司使用的技术中增加更多的认知能力将使组织重新考虑其对人工劳动的使用方式中心运营,仓库活动,卡车运输,实体零售,甚至采矿,石油和天然气活动。许多人认为,失业不会在薪资表的顶部或底部出现,而是在中部出现。人将减少管理,而机器和AI同事将进行更多管理。这些中等收入工作在美国人口中所占的比例很高,因此无疑将对工作和劳动力产生影响。
劳工与统计局(Bureau of Labor&Statistics)于2017年发布的报告称,大多数就业岗位是零售,专业服务,医疗保健和政府部门。毫不奇怪,人工智能可能会减少零售,政府和专业服务工作的一部分。实际上,在需要人工劳动的地区,将纸张或零碎的东西从一个地方移到另一个地方,已经进行了劳动力调整。这些高度重复,监管密集且容易出错的流程作业已被计算机系统取代。当计算机能够完成同样出色的工作时,尤其是具有理解信息的含义和上下文的能力时,为什么人们会四处移动信息?此外,尽管我们仍处于自动驾驶汽车的起步阶段(甚至很危险),毫无疑问,运输,仓库和物流行业的未来方向正在迅速走向自治。在美国许多州,按类别划分的雇佣人数最多的卡车驾驶者无疑将成为未来的危险职业。
从早期工业革命的自动织布机到当今的计算机,每一波技术的争论都认为工作并没有被破坏,而是随着创造了全新的就业类别,就业从一个地方转移到了另一个地方。路德主义者可能是为了抗议机器式自动化而破坏了工厂,但今天,这些工人将捍卫制造业以防止这些工作的消失。实际上,如果您回头看得很远,您会发现从制造转向专业服务的趋势是在第二次世界大战之后以及全球化势不可挡的情况下开始的。
1910年,制造业,运输业,零售业和家庭服务业是主要的雇主。诸如洗衣机,洗碗机,微波炉和炉灶面/炉灶之类的发明终止了作为主要雇主的家庭服务。但是,美国并没有经历过大规模的失业浪潮,因为我们在专业服务领域发明了整个经济新的主要部门,而在1910年几乎没有这个类别。同样,从1978年开始,主要类别的主要雇主的发展也发生了重大变化,秘书是员工类型中最大的类别。随之而来的是计算机,还有打字机,文件柜和负责管理人员调度的人员。
此外,即使是超级认知的AI系统也不会相对影响很多类别的就业。政府,医疗保健,教育,休闲和款待以及许多专业服务类别(尤其是房地产)将继续成为主要雇主,即使将AI添加到这些行业中,仍然需要人类,但他们只会做得更好,对其他人类的需求更敏感,而不是取代他们。毕竟,没有什么比政府或在旅馆里闲逛更人性化了。只要有人,我们就会有政府,老师,医生和小屋。即使在机器人技术产生了重大影响的领域,我们也看到了令人困惑的矛盾。
真正的工作创造者将是我们甚至无法想到的全新的工作类别。如果您时光倒流20或30年,并告诉某人他们将担任社交媒体营销商,那么他们将不知道您在说什么。同样,如果您前进20到30年,那么整个经济领域和主要雇主将是今天所无法实现的。昨天的制造商是今天的程序员。昨天的秘书是今天的数据库管理员。昨天的挤奶者是今天的优步司机。确实,并不是创造或破坏了工作,而是整个工作类别都消失了,而新的职位已经取代了。
人们很难想象要出现什么样的新工作和新领域。由于我们只能如实地预见明天会发生什么,而很难想象未来会发生什么,因此我们有限的人类思维使我们无法确定净影响将是负面的。但是事实并非如此。
毫无疑问,将有新类别的工作直接与创建具有AI功能的功能相关,无论是软件形式还是硬件形式。但是,没有人可以争辩说,这些工作中的任何一个都可以弥补使用这些产品所导致的工人数量的减少。数据科学家,机器人工程师和ML程序员不会弥补卡车司机或呼叫中心工作人员的减少。相反,创造将是我们最不期望的地方。是否会有全新的专业服务类别,而如果不使用高级智能作为助手,这是不可能的?我们是否会看到由智能助手和第三方服务推动的大量自雇浪潮,这些人将个人变成了一家重要的大型公司?
毫无疑问,随着我们从一个工业化时代转移到另一个工业时代,世界经济正在发生革命性转变,这一点在业内被许多人称为工业4.0。每个工业化浪潮之间的过渡不一定都是干净的。如果在淘汰旧的工作类别之前未创建新的工作类别,则过渡可能会很麻烦。但是,很明显,我们已经开始进行过渡,现在拭目以待的是,随着正在开发的新功能的发展,未来将如何发展。只有时间会告诉我们将出现哪些新工作,哪些将会消失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18