
作者:Josh Krist, Staff Writer, Workday
在商业流行语中,人工智能似乎是最重要的。每个人都在谈论它,但是实际上有多少人理解它呢?阿贾伊·阿格劳瓦尔(Ajay Agrawal)在这一领域取得了令人难以置信的进步。 由Agrawal,Joshua Gans和Avi Goldfarb撰写的2018年一本书 《预测机器:人工智能的简单经济学》为企业领导者提供了有关如何实现人工智能(AI)价值的可行建议。
本书的作者解释说,就像便宜的电和光,得益于电力或便宜计算,那么更好更快更便宜的预测将摆脱业务模型和流程中的不确定性,并导致整个行业的重新构想。归根结底,AI有望成为具有多样性的变革性通用技术。
在2019年福布斯CIO峰会休息期间,我们在加利福尼亚半月湾一个有雾的下午会见了Agrawal ,并聊了他书中的一些主要学习内容。我们的谈话节选如下。
答:对于他们来说,我最好的建议是将AI视为降低预测成本。当预测或其他任何东西变得更便宜时,我们将使用更多的预测,并开始以更巧妙的方式使用它。
当我与首席执行官和CIO会面时,他们常常会说:“我们有25,000名员工,而我们从事的是这一行业。我们应该从哪里开始使用AI?” 答案通常很简单-您的数据科学小组。该团队已经确定了贵公司的预测问题,并以数字格式存储了数据,并将这些预测集成到了工作流程中。现在,他们要做的就是使用一些新的统计技术,如果有足够的数据,这些技术将生成更好,更快和更便宜的预测。
人工智能只能替代一件事,那就是人类的预测。
观察AI的另一种方式是通过重铸我们以前无法将其视为预测问题的问题,以一种可以通过AI解决它们的方式。例如,我们有很多来自大型组织的人力资源主管来到我们位于多伦多的Creative Destruction Lab,他们会说:“我们想弄清楚要寻找什么技能,我们应该雇用谁以及如何提高我们现有人的技能。” 然后,在单独的对话中,我们将听到业务领导者说:“我们在销售,市场营销和制造中都需要AI。除人力资源外,我们在大多数地方都需要AI。”
大多数人认为,由于HR是非常人性化的并且需要大量的情商,因此它不需要AI。错了,人们可以通过将诸如招聘和技能开发的某些方面的人力资源功能转换为一系列预测来利用AI,然后人们可以运用他们的判断力。
答:这真的很重要,因为很多人对此感到非常威胁。但是,人工智能只能替代一件事,这是人类的预言。
所有人类的预测都容易被机器所取代。但是,人类还有许多其他有价值的事情,它们是对预测的补充而不是替代。正如我们刚才提到的,判断力的一个方面是-人有判断力,而AI没有。人们在任何地方部署判决时,该判决的价值都会上升,因为我们可以将其应用于越来越高的保真度预测中。
这是一个比喻:假设有两名会计师面试同一份工作。其中一位非常擅长快速准确地将脑袋中的数字相加。另一位会计师的判断力很好,他擅长问一些聪明的问题,例如:“当利率上升四分之一时,我们的业务将会怎样?”
面试官可能对第一会计师说:“您具有宝贵的技能,可以快速,准确地将数字累加到您的脑海中,因此您将节省很多时间。” 对于第二人,面试官可能会说:“拥有这种判断能力真是太好了,但是每次您提出一个聪明的问题时,我们都需要三天的时间来回答。这是很有趣的技能,但它的价值有限。”
然后是电子表格,由于机器均衡,第一个人的价值下降了。快或慢将数字加起来都没关系。该机器比任何人都更快,更准确。
然而,第二会计师仍然有良好的判断力。他的价值不断提高,因为现在每次遇到一个聪明的问题时,他只需要在电子表格中更改一个单元格即可找到答案,而不是花三天时间回答问题。
答:是的,判断可以量化。如果机器能够观察到足够多的人根据其预测采取行动,那么它就可以开始推断我们的判断并进行预测。但是,这总是一场军备竞赛。随着AI观察到许多判断,并将其转化为预测,然后我们可以将判断应用于这些预测。审判将仍然是人类的游戏。
答:我最近在东京,对这么多大型国际公司用日语开展业务感到惊讶。甚至他们的高级管理人员也不会说英语,因此很多次会议期间都必须有口译员在场。我想:“哇,我们在语言上确实很分离。当我们最终获得可以即时翻译的商业级翻译器时,这些障碍将逐渐消失。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11