
作者:Josh Krist, Staff Writer, Workday
在商业流行语中,人工智能似乎是最重要的。每个人都在谈论它,但是实际上有多少人理解它呢?阿贾伊·阿格劳瓦尔(Ajay Agrawal)在这一领域取得了令人难以置信的进步。 由Agrawal,Joshua Gans和Avi Goldfarb撰写的2018年一本书 《预测机器:人工智能的简单经济学》为企业领导者提供了有关如何实现人工智能(AI)价值的可行建议。
本书的作者解释说,就像便宜的电和光,得益于电力或便宜计算,那么更好更快更便宜的预测将摆脱业务模型和流程中的不确定性,并导致整个行业的重新构想。归根结底,AI有望成为具有多样性的变革性通用技术。
在2019年福布斯CIO峰会休息期间,我们在加利福尼亚半月湾一个有雾的下午会见了Agrawal ,并聊了他书中的一些主要学习内容。我们的谈话节选如下。
答:对于他们来说,我最好的建议是将AI视为降低预测成本。当预测或其他任何东西变得更便宜时,我们将使用更多的预测,并开始以更巧妙的方式使用它。
当我与首席执行官和CIO会面时,他们常常会说:“我们有25,000名员工,而我们从事的是这一行业。我们应该从哪里开始使用AI?” 答案通常很简单-您的数据科学小组。该团队已经确定了贵公司的预测问题,并以数字格式存储了数据,并将这些预测集成到了工作流程中。现在,他们要做的就是使用一些新的统计技术,如果有足够的数据,这些技术将生成更好,更快和更便宜的预测。
人工智能只能替代一件事,那就是人类的预测。
观察AI的另一种方式是通过重铸我们以前无法将其视为预测问题的问题,以一种可以通过AI解决它们的方式。例如,我们有很多来自大型组织的人力资源主管来到我们位于多伦多的Creative Destruction Lab,他们会说:“我们想弄清楚要寻找什么技能,我们应该雇用谁以及如何提高我们现有人的技能。” 然后,在单独的对话中,我们将听到业务领导者说:“我们在销售,市场营销和制造中都需要AI。除人力资源外,我们在大多数地方都需要AI。”
大多数人认为,由于HR是非常人性化的并且需要大量的情商,因此它不需要AI。错了,人们可以通过将诸如招聘和技能开发的某些方面的人力资源功能转换为一系列预测来利用AI,然后人们可以运用他们的判断力。
答:这真的很重要,因为很多人对此感到非常威胁。但是,人工智能只能替代一件事,这是人类的预言。
所有人类的预测都容易被机器所取代。但是,人类还有许多其他有价值的事情,它们是对预测的补充而不是替代。正如我们刚才提到的,判断力的一个方面是-人有判断力,而AI没有。人们在任何地方部署判决时,该判决的价值都会上升,因为我们可以将其应用于越来越高的保真度预测中。
这是一个比喻:假设有两名会计师面试同一份工作。其中一位非常擅长快速准确地将脑袋中的数字相加。另一位会计师的判断力很好,他擅长问一些聪明的问题,例如:“当利率上升四分之一时,我们的业务将会怎样?”
面试官可能对第一会计师说:“您具有宝贵的技能,可以快速,准确地将数字累加到您的脑海中,因此您将节省很多时间。” 对于第二人,面试官可能会说:“拥有这种判断能力真是太好了,但是每次您提出一个聪明的问题时,我们都需要三天的时间来回答。这是很有趣的技能,但它的价值有限。”
然后是电子表格,由于机器均衡,第一个人的价值下降了。快或慢将数字加起来都没关系。该机器比任何人都更快,更准确。
然而,第二会计师仍然有良好的判断力。他的价值不断提高,因为现在每次遇到一个聪明的问题时,他只需要在电子表格中更改一个单元格即可找到答案,而不是花三天时间回答问题。
答:是的,判断可以量化。如果机器能够观察到足够多的人根据其预测采取行动,那么它就可以开始推断我们的判断并进行预测。但是,这总是一场军备竞赛。随着AI观察到许多判断,并将其转化为预测,然后我们可以将判断应用于这些预测。审判将仍然是人类的游戏。
答:我最近在东京,对这么多大型国际公司用日语开展业务感到惊讶。甚至他们的高级管理人员也不会说英语,因此很多次会议期间都必须有口译员在场。我想:“哇,我们在语言上确实很分离。当我们最终获得可以即时翻译的商业级翻译器时,这些障碍将逐渐消失。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25