京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析师
之前是把所有的菜品都洗好并放在不同的盛放的容器里。现在要进行切配了,需要把这些菜品挑选出来,比如想要做一盘凉拌黄瓜,需要先把黄瓜在他所在的容器中找出来;要做一盘可乐鸡翅,需要先从容器中把鸡翅找出来。
数据分析也是同样的道理,你要分析什么,首先要把对应的数据筛选出来。
常规的数据选择主要有列选择、行选择、行列同时选择三种方式。
一、列选择
1、选择某一列/某几列
(1)Excel实现
在Excel中选择某一列直接用鼠标选中这一列即可;如果要同时选择多列,且待选择的列不是相邻的,这个时候就可以先选中其中一列,然后按住Ctrl键不放,再选择其他列。举个例子,同时选择客户姓名和成交时间这两列,如下图所示。
(2)Python实现
在Python中我们要想获取某列只需要在表df后面的方括号中指明要选择的列名即可。如果是一列,则只需要传入一个列名;如果是同时选择多列,则传入多个列名即可,多个列名用一个list存起来。
在Python中我们把这种通过传入列名选择数据的方式称为普通索引。
除了传入具体的列名,我们还可以传入具体列的位置,即第几列,对数据进行选取,通过传入位置来获取数据时需要用到iloc方法。
在上面的代码中,iloc 后的方括号中逗号之前的部分表示要获取的行的位置,只输入一个冒号,不输入任何数值表示获取所有的行;逗号之后的方括号表示要获取的列的位置,列的位置同样是也是从0开始计数。
我们把这种通过传入具体位置来选择数据的方式称为位置索引。
2、选择连续的某几列
(1)Excel实现
在Excel中,要选择连续的几列时,直接用鼠标选中这几列即可操作。当然了,你也可以先选择一列,然后按住 Ctrl 键再去选择其他列,由于要选取的列是连续的,因此没必要这么麻烦。
(2)Python实现
在Python中可以通过前面介绍的普通索引和位置索引获取某一列或多列的数据。当你要获取的是连续的某几列,用普通索引和位置索引也是可以做到的,但是因为你要获取的列是连续的,所以只要传入这些连续列的位置区间即可,同样需要用到 iloc方法。
在上面的代码中,iloc 后的方括号中逗号之前的表示选择的行,当只传入一个冒号时,表示选择所有行;逗号后面表示要选择列的位置区间,0:3表示选择第1列到第4列之间的值(包含第1列但不包含第4列),我们把这种通过传入一个位置区间来获取数据的方式称为切片索引。
二、行选择
1、选择某一行/某几行
(1)Excel实现
在Excel中选择行与选择列的方式是一样的,先选择一行,按住Ctrl键再选择其他行。
(2)Python实现
在Python中,获取行的方式主要有两种,一种是普通索引,即传入具体行索引的名称,需要用到loc方法;另一种是位置索引,即传入具体的行数,需要用到iloc方法。
为了让大家看得更清楚,我们对行索引进行自定义。
2、选择连续的某几行
(1)Excel实现
在Excel中选择连续的某几行与选择连续的某几列方法一致,不再赘述。
(2)Python实现
在Python中,选择连续的某几行时,你同样可以把要选择的每一个行索引名字或者行索引的位置输进去。很显然这是没有必要的,只要把连续行的位置用一个区间表示,然后传给iloc即可。
3、选择满足条件的行
前两节获取某一列时,获取的是这一列的所有行,我们还可以只筛选出这一列中满足条件的值。
比如年龄这一列,需要把非异常值(大于200的属于异常值),即小于200岁的年龄筛选出来,该怎么实现呢?
(1)Excel实现
在Excel中我们直接使用筛选功能,将满足条件的值筛选出来,筛选方法如下图所示。
筛选年龄小于200的数据前后的对比如下图所示。
(2)Python实现
在Python中,我们直接在表名后面指明哪列要满足什么条件,就可以把满足条件的数据筛选出来。
我们把上面这种通过传入一个判断条件来选择数据的方式称为布尔索引。
传入的条件还可以是多个,如下为选择的年龄小于200且唯一识别码小于102的数据。
三、行列同时选择
上面的数据选择都是针对单一的行或列进行选择,实际业务中我们也会用到行、列同时选择,所谓的行、列同时选择就是选择出行和列的相交部分。
例如,我们要选择第二、三行和第二、三列相交部分的数据,下图中的阴影部分就是最终的选择结果。
行列同时选择在Excel中主要是通过鼠标拖曳实现的,与前面的单一行/列选择方法一致,此处不再赘述,接下来主要讲讲在Python中如何实现。
1、普通索引+普通索引选择指定的行和列
普通索引+普通索引就是通过同时传入行和列的索引名称进行数据选择,需要用到loc方法。
loc方法中的第一对方括号表示行索引的选择,传入行索引名称;loc方法中的第二对方括号表示列索引的选择,传入列索引名称。
2、位置索引+位置索引选择指定的行和列
位置索引+位置索引是通过同时传入行、列索引的位置来获取数据,需要用到iloc方法。
在 iloc 方法中的第一对方括号表示行索引的选择,传入要选择行索引的位置;第二对方括号表示列索引的选择,传入要选择列索引的位置。行和列索引的位置都是从0开始计数。
3、布尔索引+普通索引选择指定的行和列
布尔索引+普通索引是先对表进行布尔索引选择行,然后通过普通索引选择列。
上面的代码表示选择年龄小于200的订单编号和年龄,先通过布尔索引选择出年龄小于200的所有行,然后通过普通索引选择订单编号和年龄这两列。
4、切片索引 + 切片索引选择指定的行和列
切片索引 + 切片索引是通过同时传入行、列索引的位置区间进行数据选择。
5、切片索引 + 普通索引选择指定的行和列
前面我们说过,如果是普通索引,就直接传入行或列名,用 loc 方法即可;如果是切片索引,也就是传入行或者列的位置区间,要用 iloc 方法。如果是切片索引+普通索引,也就是行(列)用切片索引,列(行)用普通索引,这种交叉索引要用ix方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11