京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 李梅花
来源 | 玩转数据分析
不知不觉,我已经做数据分析相关工作已经有9年时间了。经常有被问到,数据分析师的核心竞争力在哪里,好像入门的工具都挺好掌握的呀。是的,知识跟技能都是可以通过时间跟努力来学会的,但是有5大能力是数据分析师更应该具备且持续提升的,也是我们的核心竞争力。
1
解决问题的能力
这是我觉得是所有能力中最重要的能力。
所有的职位、技能、知识都是为了解决问题而来。数据分析师的职业本质是用数据分析技能来帮助业务/老板实现目标。在实现目标的过程中会遇到很多问题,我们可能会用到数据发现机会点、预估风险,也会用数据对比来做可行性分析,用数据及时发现问题。每种分析主题可能对应不同的方法与分析模型,但是核心点是我们得知道什么情况适用什么问题,还要灵活应对。这灵活应对的能力,就是解决问题的能力。
可能你知道很多知识,但是遇到棘手的问题也会束手无策,这时候分析高手们会淡定自若地分析问题的背景、逻辑,拆分问题直到能解决为止。
简而言之,老板交给你一个任务,不管用什么方式,你都能解决,这就是你的核心竞争力,你可以不会SQL不会算法。
如何提升解决问题能力,我觉得,又得靠提升下面的几项能力。
2
逻辑思维能力
简而言之,就是要能快速get到问题核心点的能力。
老板交给你一件事情,你能快速理解里面的核心是什么么?新到一个部门,你能快速理清楚里面的业务逻辑不至于一头雾水无从下手么?写分析结论时,能做到不重不漏又清晰明了么?
逻辑思维能力是靠训练出来的,例如写分析报告,就是靠一次次的优化修改你才会知道其实一句话可以说得这么精炼,直指人心。当然,也需要理论知识的引导,建议可以学习《逻辑学》、《数学分析》、《金字塔原理》、《战略分析》等逻辑训练的内容。从小不偏科,喜欢写作,大学学的数学,毕业拿到第一个offer就是市场分析,冥冥中,我有一种注定要做数据分析师的感觉。
任何能力都可以通过有效的学习得到,所有我们得拥有下面这个核心能力。
3
学习能力
这里的学习能力不是指考试考高分的能力,当然,能考高分的同学学习能力都很强。
我特指的是理解、模仿、快速应用、复盘总结形成规律的能力。
数据分析师的职业特性导致需要不断的学习新的业务知识,需要在短时间内了解一个行业并给出自己专业的建议,这就需要你有很强的学习能力。同时大数据时代工具变化发展快,你也得多掌握一些技能才能帮助你提升效率,一个会自己从数据库快速找到源数据发现问题的分析师,肯定会比只会焦急等待漫长数据研发流程的分析师更早出分析结论。当然,合理的分工协作是能整体提升团队效能的,能提前规划分析指标体系落地到报表系统,提前做好拆分钻取工作,这就更加有效率了。
学习东西,不仅是通过看书这个途径,还有上课(线下的,线上的),还有工作中实践,还要多跟人交流。学习也不仅是学习数据分析相关的,也要多学习跨领域的知识。想想我自己,觉得自己圈子太小,只顾着自己的一亩三分地,这也让我自己的见识受限。所以我也在逐渐改变,多与不同行业的人交流,多跟不同岗位的同事交流,给自己一周必须跟一个以前没有交流过的人交流的KPI。
4
数据敏感力
数据分析师还有一个特别的能力,相对于其他岗位的同学,会更容易第一眼发现数据的规律、数据中的异常,这就是对数据敏感的能力。
对数据敏感,是建立在对业务理解的基础上的。
这里我建议大家尽可能参加不同类型的数据分析项目,不仅仅是做需求,写分析报告,也可以尽量去参加数据指标体系的建设、数据产品的规划,最好还能做数据挖掘相关的项目。各种类型的项目都有经验,你才能显示出数据领域更加专业的能力。当然,初期参与自己不熟悉的项目,就得多付出,多学习总结,不要太计较短期所得,万物长宜放眼量。
5
沟通能力
数据分析师还有一个重要的作用,那就是连接业务与开发。
这时候沟通能力就非常重要了。
乐于沟通,而且能让人愿意跟你沟通,是个非常难得的能力。首先你得拥有上面提到的能力,特别是逻辑思维能力,言简意赅,言之有物,同时还得乐于分享,愿意把你知道的东西分享给更多人。
当然,如果你有足够的影响力,特别是在专业方面的,大家也会更乐于听你讲。
所以,我们还是要多提升自己,多输出,能被别人需要是幸福感的重要来源之一。
综上,相信有远见的数据分析师,一定会积极提升以上讲到的五大核心能力:
1、解决问题的能力
2、逻辑思维能力
3、学习能力
4、数据敏感力
5、沟通能力。
让我们一起加油,玩转数据分析!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15