
作者 | 大数据
来源 | hzdashuju
微软在联机事务处理(OLTP)云基准测试中实现每节点虚拟机数量提升36%,硬件成本下降30%;SAP HANA让系统重启从20分钟缩短至90秒,性能提升13倍之多,实现每TB数据库容量成本节约39%;百度在为Feed流服务提供高性能数据存取支撑时实现TCO的有效降低;亚信在其电信业务支持系统中在成本相当的情况下,实现查询响应下降35%……
为什么在数据爆炸性增长的今天,微软、SAP、百度、亚信们能够实现数据分析性能的提升以及总体拥有成本的大幅下降?
这一切还得先从数据分析的难题说起。
01 数据分析的难题在哪里
如今,我们身处一个数据洪流的时代,并且数据增长的脚步正在加快。过去,因为移动互联网、社交网络的快速发展,使得基于人的大量数据因此而产生;现在,随着5G、物联网的崛起,越来越多的设备开始接入到网络之中,并且开始源源不断的产生数据。
根据Strategy Analytics的《全球联网和物联网设备预测更新》报告显示,2018年全球联网设备数量达到220亿,到2025年将会有386亿台联网设备。
身处数字时代,面对海量数据如何挖掘其中的价值、洞悉趋势变化,就成为几乎所有企业/组织所期待的。但一个残酷的事实却是,大部分的企业/组织还只能分析极为一小部分的数据。就如IDC Global DataSPhere报告指出,全球只有不到2%的数据经过了分析。数据分析技术还远未到普及的程度,数据处理与分析的效率则远远落后于数据产生的数据。
那么,当前数据分析主要有哪些挑战?
首先是数据分析的数据量正在越来越庞大,海量数据的产生将走向日常化。以自动驾驶为例,一辆自动驾驶汽车一天收集的样本就高达上百万张高清图谱,其数据量高达3TB,并且需要不断对这些海量数据进行分析与学习,进而会产生出更多的数据。
未来,随着医疗、制造、航天、能源、交通等行业数字化程度越来越高,数据分析所面临的压力也会持续增大。
其次,数据分析对于实时性要求越来越高。虽然数据量增长迅速,但是用户对于数据分析实时性的要求一点都没有下降,甚至希望数据分析能够越快越好。比如运营商的数据,种类多、体量大,一种话单每天的数据量就达到上百亿条,如此大的实时数据流,也让业务对数据分析处理的实时性提出了极高要求。
最后则是数据分析对于成本的挑战,由于数据分析需要处理的数据越来越多。实时性要求越来越快,使得数据分析所需要的硬件资源、人员投入也更多,随之而来的就是整体拥有成本(TCO)的上升。
面对数据分析这些典型的挑战,到底使用哪些技术,才可以让数据分析和价值挖掘带来更快的速度和更加合理的成本?大部分人认为需要更快、核心更多、架构更有的CPU,但是CPU速度越来越快的今天,存储和网络传输的性能其实是目前最大的瓶颈所在,亟需通过新技术补上。
如何破解数据分析这些难题?英特尔傲腾数据中心级持久内存被认为是一剂良方。这也是微软、SAP、百度、亚信们能够从容应对数据分析的秘诀所在。
02 傲腾补上数据分析的短板
傲腾作为一种新的介质,为何可以在数据处理中发挥至关重要的作用?
这还得从计算机体系结构说起,由于目前计算依然是冯诺依曼体系结构,是计算与存储分离的架构,这就决定了越靠近CPU,数据处理速度就越快,但是容量也就越小,这就直接导致了在CPU性能越来越快的今天,CPU与存储介质之间的性能鸿沟越来越大。
如果为了数据分析的性能,而不断的增加内存容量,则会大幅提升整体性能成本,出现断电还会出现数据丢失的情况;如果依靠固态盘,则又无法弥补性能鸿沟。
因此,英特尔傲腾数据中心级持久内存孕育而生。英特尔傲腾数据中心持久内存与内存不同之处在于,它可以以更加经济的成本来扩展出更高的容量,并且具备数据非易失性,还具备以内存相近的数据读写和延时,可以完美填补CPU与存储介质之间的性能鸿沟。
英特尔傲腾数据中心级持久内存具备低成本下大容量的特性,单一模块可提供128GB/256GB/512GB三种选择,可以与传统DDR4 内存一种安装在基于第二代至强可扩展处理器的平台上,可以以更经济的价格在八路系统上实现高达24TB的容量,从而帮助用户在更加靠近CPU的位置加载远超之前规模的数据集,完美适合包括内存数据库以及其他对大容量有需求的数据分析应用,让更多数据的处理和分析走向实时化。
不仅如此,英特尔傲腾数据中心级持久内存还在产品模式上充分考虑用户的需求,提供了三种模式供用户灵活使用。
英特尔为傲腾数据中心级持久内存设计了第一种工作模式是内存模式。在这种模式下,它就是单纯的价格更便宜、量又足,但断电后也不会保存数据的内存,用作内存的容量扩展搭档。处理器的内存控制器会将DRAM内存视为缓存,而将英特尔傲腾数据中心级持久内存作为可寻址的主内存。
云计算最关键的技术--虚拟化及容器技术可以最快的速度直接从这种模式中受益,因为它可以借此以更低的成本在单个物理服务器上提升虚拟机或容器的密度,或为虚拟机及容器提供更大的内存容量,且无需重新编写软件。对于数据持久性没有要求的内存数据库,也通用能用这一模式快速实现在内存上的数据规模扩展。
比如,在百度Feed流服务中,其核心模块Feed-Cube全部部署在英特尔傲腾数据中心级持久内存的内存模式上,在大并发访问压力下的性能表现和资源消耗均符合预期,完美实现了Feed留服务高性能 数据存取的支撑,大幅降了总体拥有成本。
微软的虚拟机服务也在这种模式下受益匪浅。微软Windows Server 2019/Hyper-V 多租户虚拟机的联机事务处理(OLTP)云基准测试中,使用内存和英特尔傲腾数据中心级持久内存组合,比仅使用内存平台相比,内存容量大幅提升33%,每节点虚拟机数量提升多达36%,成本则下降30%。
如果用户对于数据持久性有要求,则英特尔傲腾数据中心持久内存可以提供第二种工作模式:App Direct模式。这种模式下,操作系统会将内存和英特尔傲腾数据中心级持久内存视为两个独立的内存池,使得英特尔傲腾数据中心级持久内存可以像内存一样寻址,并像存储设备一样具备数据持久性。
这种持久性让其在系统重启期间也能保留此前加载的数据,从而能增加系统的业务弹性,缩短重启时间,提升业务恢复的速度。只不过这种模式需要事先对运行在其上的软件进行修改和调优。
SAP在这种模式下实现了性能的大幅提升。SAP测试了其HANA在3TB DRAM内存平台,以及在3TB DRAM内存+6TB英特尔傲腾数据中心级持久内存平台上的性能表现。结果表明,后者可以让系统重启速度从20分钟缩短到90秒,实现13倍的提升,从而尽可能减少停机时间,并使每TB数据库容量的成本节约39%。
如果用户既对内存模式有需求,又有工作负载需要运行在App Direnct模式下,那么英特尔傲腾数据中心级持久内存就可激活其第三种工作模式--双重模式,这种模式可通过预配置的方式,部分处于内存模式,其余部分则处于App Direct模式,借以兼顾用户的双重需求。
03 英特尔精选方案让数据分析如虎添翼
2019年4月,英特尔推出第二代至强可扩展平台,包括了第二代至强可扩展处理器、傲腾数据中心级持久内存等一系列“以数据为中心”的产品技术组合。在这些产品技术的基础上,英特尔还推出了英特尔精选方案,可以为包括数据分析在内的各种工作负载进行优化,进一步提升应用的性能表现。
为了更好地让用户能够在熟悉的软件上释放第二代英特尔至强可扩展处理器及英特尔傲腾数据中心级持久内存的潜力,英特尔在精选方面层面携手合作伙伴,针对各种以数据为中心的工作负载,加速开发经过全方位优化和验证,使之更易于部署和使用,从而推进用户数据处理和分析平台的创新升级,进而帮助用户驾驭数据洪流,打造实时洞察,挖掘数据价值。
总体而言,英特尔针对数据分析当前面临的挑战,可以从技术、产品、解决方案等层面为用户提供全方位的办法,这也是像微软、百度、SAP、亚信们青睐英特尔的原因。未来,随着更多行业数字化程度替身个,数据分析将逐步走向普及,将会有越来越多的用户会选择英特尔傲腾数据中心级持久内存以及英特尔精选解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15