
作者 | 苏克1900
来源 | 高级农民工
长时间使用浏览器会积累大量浏览器历史记录,这些是很隐私的数据,里面甚至可能有一些不可描述的网站或者搜索记录不想让别人知道。不过,我们自己可能会感兴趣,天天都在上网,想知道长期下来是都在摸鱼还是有认真工作。
其次,了解下自己每天打开多少次网页、哪些网站上的最多、常搜哪些关键词,这些也很有趣。
下面就来给大家介绍一款 Python 编写的神工具,可以一键分析你的上网行为。我用了后发现了很多不可思议的结论。
比如访问次数最多的网站居然是微信公众号,7000 多次,看来弄自媒体占了大量上网时间。
看到了每天打开网站的次数,平均都有好几百次,8 月 8 号那天发生了什么,竟打开了 1600 多次!
然后又统计了停留时间最长的网页页面,在 http://md.aclickall.com/ 这个网站居然停留了 660 小时,这是个文章排版网站,因为经常要排版所以把该页面固定了起来。
然后统计出了搜索最多的十个关键词,python 居然是第一位!前十中基本都是数据编程相关的,没想到自己这么爱学习。
最后统计出了各大搜索引擎的使用率。google 的使用率达到了 97.3%,而百度只有不到 3%,大概是偶尔无法科学上网的时候用了下百度。
怎么样是不是挺有意思?下面就来说说怎么用这款工具,让你也可以分分钟了解自己的上网行为,非常简单。
这款 Python 工具其实就是分析浏览器的历史记录数据库文件然后可视化。这里的浏览器只支持 Chrome 和以 Chrome 为内核的浏览器,比如 Centbrower 、360极速浏览器等,其他浏览器比如 ie、Firefox 不支持。如果有登陆账号,桌面端和电脑端会一起分析,更全面。
第一步,打开网站:Browser History Analysis
接着上传你的浏览器历史记录文件,这个历史记录文件怎么获得呢?
新建一个标签页,输入 chrome://version/ 回车,可以打开你的浏览器详细信息:
复制「个人资料路径」到资源管理器打开,然后找到 history 文件复制一份到桌面。
接着就在刚才的网站中上传该文件(我的文件有 15MB 大),稍等片刻就可以得到上门的那些可视化分析结果。
你可能会担心上传浏览器历史记录是否安全,尽管放心,这个程序是开源的。
下面再简单说下如何用 python 一步步实现的这个程序功能的,这是一个很棒的 python 练手项目,涉及到了前后端的知识,整个程序包含多个文件:
Code
├─ app_callback.py 回调函数,实现后台功能
├─ app_configuration.py web服务器配置
├─ app_layout.py web前端页面配置
├─ app_plot.py web图表绘制
├─ app.py web服务器的启动
├─ assets web所需的一些静态资源文件
│ ├─ css web前端元素布局文件
│ │ ├─ custum-styles_phyloapp.css
│ │ └─ stylesheet.css
│ ├─ image web前端logo图标
│ │ ├─ GitHub-Mark-Light.png
│ └─ static web前端帮助页面
│ │ ├─ help.html
│ │ └─ help.md
├─ history_data.py 解析chrome历史记录文件
└─ requirement.txt 程序所需依赖库
每个程序实现的功能:
具体实现思路大致分为下面几点:
历史记录 history 是一个 sqllite 数据库文件,连接数据库查询然后调用数据库中的信息并存储。
可视化图形使用的是可交互式的 plotly 库。
小结
上网记录是很重要的隐私数据,平常自己可能无法从中直接发现什么,使用 Python 简单一分析就可以发现很多东西,所以平时尽量注重隐私保护。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30