京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 苏克1900
来源 | 高级农民工
长时间使用浏览器会积累大量浏览器历史记录,这些是很隐私的数据,里面甚至可能有一些不可描述的网站或者搜索记录不想让别人知道。不过,我们自己可能会感兴趣,天天都在上网,想知道长期下来是都在摸鱼还是有认真工作。
其次,了解下自己每天打开多少次网页、哪些网站上的最多、常搜哪些关键词,这些也很有趣。
下面就来给大家介绍一款 Python 编写的神工具,可以一键分析你的上网行为。我用了后发现了很多不可思议的结论。
比如访问次数最多的网站居然是微信公众号,7000 多次,看来弄自媒体占了大量上网时间。
看到了每天打开网站的次数,平均都有好几百次,8 月 8 号那天发生了什么,竟打开了 1600 多次!
然后又统计了停留时间最长的网页页面,在 http://md.aclickall.com/ 这个网站居然停留了 660 小时,这是个文章排版网站,因为经常要排版所以把该页面固定了起来。
然后统计出了搜索最多的十个关键词,python 居然是第一位!前十中基本都是数据编程相关的,没想到自己这么爱学习。
最后统计出了各大搜索引擎的使用率。google 的使用率达到了 97.3%,而百度只有不到 3%,大概是偶尔无法科学上网的时候用了下百度。
怎么样是不是挺有意思?下面就来说说怎么用这款工具,让你也可以分分钟了解自己的上网行为,非常简单。
这款 Python 工具其实就是分析浏览器的历史记录数据库文件然后可视化。这里的浏览器只支持 Chrome 和以 Chrome 为内核的浏览器,比如 Centbrower 、360极速浏览器等,其他浏览器比如 ie、Firefox 不支持。如果有登陆账号,桌面端和电脑端会一起分析,更全面。
第一步,打开网站:Browser History Analysis
接着上传你的浏览器历史记录文件,这个历史记录文件怎么获得呢?
新建一个标签页,输入 chrome://version/ 回车,可以打开你的浏览器详细信息:
复制「个人资料路径」到资源管理器打开,然后找到 history 文件复制一份到桌面。
接着就在刚才的网站中上传该文件(我的文件有 15MB 大),稍等片刻就可以得到上门的那些可视化分析结果。
你可能会担心上传浏览器历史记录是否安全,尽管放心,这个程序是开源的。
下面再简单说下如何用 python 一步步实现的这个程序功能的,这是一个很棒的 python 练手项目,涉及到了前后端的知识,整个程序包含多个文件:
Code
├─ app_callback.py 回调函数,实现后台功能
├─ app_configuration.py web服务器配置
├─ app_layout.py web前端页面配置
├─ app_plot.py web图表绘制
├─ app.py web服务器的启动
├─ assets web所需的一些静态资源文件
│ ├─ css web前端元素布局文件
│ │ ├─ custum-styles_phyloapp.css
│ │ └─ stylesheet.css
│ ├─ image web前端logo图标
│ │ ├─ GitHub-Mark-Light.png
│ └─ static web前端帮助页面
│ │ ├─ help.html
│ │ └─ help.md
├─ history_data.py 解析chrome历史记录文件
└─ requirement.txt 程序所需依赖库
每个程序实现的功能:
具体实现思路大致分为下面几点:
历史记录 history 是一个 sqllite 数据库文件,连接数据库查询然后调用数据库中的信息并存储。
可视化图形使用的是可交互式的 plotly 库。
小结
上网记录是很重要的隐私数据,平常自己可能无法从中直接发现什么,使用 Python 简单一分析就可以发现很多东西,所以平时尽量注重隐私保护。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04