京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析工作是一个比较繁琐的工作。一般来说,繁琐的工作容易出错,这些导致我们的数据分析工作效率降低。如果我们掌握了一些技巧的话,我们就能够大大地提高数据分析的工作效率。在这篇文章中我们就重点为大家介绍数据分析需要掌握的几个技巧。
在做数据分析工作的时候,我们需要掌握很多的工具以及模型,模型是数据分析中一个十分重要的工具。通常来说,数据分析大多涉及的都是营销方面。而在营销方面的理论模型有4P、用户使用行为、STP理论、SWOT等,而管理方面的理论模型有PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则等。这些都是经典的营销、管理方面的理论,需要在工作中不断实践应用,我们才能体会其强大的作用。
那么数据收集过程中,我们的数据来源从哪里获取呢?一般来说数据来源主要有4种方式,第一就是从数据库调取。每个公司都有自己的业务数据库,存放从公司成立以来产生的相关业务数据。这个业务数据库就是一个庞大的数据资源,需要有效地利用起来。第二就是从公开出版物获取,可以用于收集数据的公开出版物包括《中国统计年鉴》《中国社会统计年鉴》《中国人口统计年鉴》《世界经济年鉴》《世界发展报告》等统计年鉴或报告。第三就是从互联网中获取。随着互联网的发展,网络上发布的数据越来越多,特别是搜索引擎可以帮助我们快速找到所需要的数据,在很多的网站中都可能有我们需要的数据。第四种方式就是通过市场调查获取数据,进行数据分析时,需要了解用户的想法与需求,但是通过以上三种方式获得此类数据会比较困难,因此可以尝试使用市场调查的方法收集用户的想法和需求数据。
在撰写数据分析报告的时候需要做到什么呢?通常来说,一份好的数据分析报告需要有两点要求。第一就是有一个好的分析框架,一份数据分析报告有一个好的分析框架,并且图文并茂、层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。当然,还需要有明确的结论,没有明确结论的分析称不上分析,同时也失去了报告的意义,因为我们最初就是为寻找或者求证一个结论才进行分析的,所以千万不要舍本求末。
通过上述的内容相信大家已经掌握了数据分析工作中的技巧,我们在做数据分析工作的时候需要了解上面的技巧并加以运用,这样就有助于我们提高数据分析能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26