
数据清洗工作中面对的对象有三个——异常值,缺失值和重复值。而每个肮脏数据都是有各自的清洗方法,尤其是异常值的方法是最多的。由此可见,数据中的异常值是有很多的,在上一篇文章中我们给大家介绍了关于清洗异常值的一些方法,在这篇文章中我们会继续为大家介绍异常值的清洗。
第一我们给大家介绍的是基于模型检测,具体操作就是先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。而这个方法的优点就是有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效,当然,缺点就是对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。
第二就是基于距离检测,通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象。这种方法的优点就是简单。缺点就是基于邻近度的方法需要O(m2)时间,大数据集不适用。当然该方法对参数的选择也是敏感的。同时不能处理具有不同密度区域的数据集,因为它使用全局阈值,不能考虑这种密度的变化。
第三就就是基于密度,当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。适合非均匀分布的数据。这种方法的优点就是给出了对象是离群点的定量度量,并且即使数据具有不同的区域也能够很好的处理,同时与基于距离的方法一样,这些方法必然具有O(m2)的时间复杂度。对于低维数据使用特定的数据结构可以达到O(mlogm)。而缺点就是参数选择困难。虽然算法通过观察不同的k值,取得最大离群点得分来处理该问题,但是,仍然需要选择这些值的上下界。
最后就是基于聚类,一个对象是基于聚类的离群点,如果该对象不强属于任何簇。离群点对初始聚类的影响如果通过聚类检测离群点,则由于离群点影响聚类,存在一个问题:结构是否有效。优点就是基于线性和接近线性复杂度(k均值)的聚类技术来发现离群点可能是高度有效的,而簇的定义通常是离群点的补,因此可能同时发现簇和离群点。缺点就是产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据中离群点的存在性。同时聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。
在这篇文章中我们给大家介绍了关于数据清洗的剩余一部分知识,通过对这些知识的了解可以帮助我们更好地理解数据分析工作。希望大家通过对这些数据分析清洗方法的学习,可以在工作时更加得心应手,也算是提升个人的职场竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29