京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据清洗工作中面对的对象有三个——异常值,缺失值和重复值。而每个肮脏数据都是有各自的清洗方法,尤其是异常值的方法是最多的。由此可见,数据中的异常值是有很多的,在上一篇文章中我们给大家介绍了关于清洗异常值的一些方法,在这篇文章中我们会继续为大家介绍异常值的清洗。
第一我们给大家介绍的是基于模型检测,具体操作就是先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。而这个方法的优点就是有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效,当然,缺点就是对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。
第二就是基于距离检测,通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象。这种方法的优点就是简单。缺点就是基于邻近度的方法需要O(m2)时间,大数据集不适用。当然该方法对参数的选择也是敏感的。同时不能处理具有不同密度区域的数据集,因为它使用全局阈值,不能考虑这种密度的变化。
第三就就是基于密度,当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。适合非均匀分布的数据。这种方法的优点就是给出了对象是离群点的定量度量,并且即使数据具有不同的区域也能够很好的处理,同时与基于距离的方法一样,这些方法必然具有O(m2)的时间复杂度。对于低维数据使用特定的数据结构可以达到O(mlogm)。而缺点就是参数选择困难。虽然算法通过观察不同的k值,取得最大离群点得分来处理该问题,但是,仍然需要选择这些值的上下界。
最后就是基于聚类,一个对象是基于聚类的离群点,如果该对象不强属于任何簇。离群点对初始聚类的影响如果通过聚类检测离群点,则由于离群点影响聚类,存在一个问题:结构是否有效。优点就是基于线性和接近线性复杂度(k均值)的聚类技术来发现离群点可能是高度有效的,而簇的定义通常是离群点的补,因此可能同时发现簇和离群点。缺点就是产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据中离群点的存在性。同时聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。
在这篇文章中我们给大家介绍了关于数据清洗的剩余一部分知识,通过对这些知识的了解可以帮助我们更好地理解数据分析工作。希望大家通过对这些数据分析清洗方法的学习,可以在工作时更加得心应手,也算是提升个人的职场竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27