京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据工作中,有很多的工具和平台需要我们去了解,当我们把这些工具烂熟于心,我们就能够更好地处理大数据所涉及的问题。关于大数据的工具有很多,我们在前面的文章中已经给大家介绍了不少,今天重点给大家介绍一下大数据的处理平台。大数据的处理平台也是有很多的,我们可以从大数据的处理过程中进行区分。而大数据的处理过程也有很多,比如大数据采集、存储、结构化处理、隐私保护、挖掘、结果展示等,各种领域的大数据应用一般都会涉及到这些基本过程,但不同应用可能会有所侧重。那么大数据处理平台都有什么类型呢?我们就给大家解答一下。
通常来说,有很多算法和模型可以解决这些处理过程中的技术问题。目前大数据技术平台有很多,这就需要我们可以对大数据处理平台进行分类,这就可以从大数据处理的过程、大数据处理的数据类型、大数据处理的方式以及平台对数据的部署方式这几方面进行。
首先我们从大数据处理的方式来划分,这样我们就能够把大数据平台分为批量处理、实时处理、综合处理。其中批量数据是对成批数据进行一次性处理,而实时处理对处理的延时有严格的要求,综合处理是指同时具备批量处理和实时处理两种方式。这样分使得大数据处理系统更容易区分。
然后我们就给大家说一下从大数据处理的过程来区分大数据处理平台。通过数据处理的过程我们可以分为数据存储、数据挖掘分析、以及为完成高效分析挖掘而设计的计算平台,它们完成数据采集、ETL、存储、结构化处理、挖掘、分析、预测、应用等功能。
如果我们从大数据处理的数据类型来划分,这里我们可以分为针对关系型数据、非关系型数据、半结构化数据、混合类型数据处理的技术平台。这些在很多企业中经常使用的。
假如我们从平台对数据的部署方式区分大数据分析平台我们可以分为基于内存的、基于磁盘的。前者在分布式系统内部的数据交换是在内存中进行,后者则是通过磁盘文件的方式。
其实技术平台还有分布式、集中式之分,云环境和非云环境之分等。这样就能够为用户提供了大数据存储、计算能力、大数据分析挖掘、以及输出展示等服务,用户可以容易地实现BI商业智能、人工智能服务,具备一站式数据应用能力。
关于大数据处理平台的划分我们就给大家介绍到这里了。其实大数据处理平台真的有很多,我们需要根据自己的实际情况选择学习大数据处理平台的相关知识,这样是对工作的负责,也是对自己的负责。最后祝愿大家早日学成大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17