
现在大数据是一个十分火热的内容,相信大家对于大数据都有一定的了解。数据分析火爆的原因就是由于数据分析这一行业具有未来的前瞻性,正因为如此使得数据分析具有了十分广阔的前景。于是很多人对于数据分析行业是比较向往的,而数据分析行业里面也细分很多职业,那么数据分析行业都有哪些职业呢?一般来说,数据分析行业有数据分析师、数据挖掘工程师、软件工程师以及统计人员等职业。
首先我们说一下数据分析师,数据分析师就是将统计人员以及数据挖掘工程师提供的数据进行处理并分析,这里说的处理就是去除肮脏数据,对数据环境进行净化,这样才能够让数据更加干净。同时数据分析师需要对数据进行分析,将外部数据和内部数据结合在一起,通过建模的形式去并将分析结果以干练简明的形式表达出来,从而满足业务的需求。
然后我们时候说一下软件工程师,软件工程师也是数据分析的重要职位,软件工程师的工作主要就是开发测试以及审核系统的应用方面。重要负责组建程序。最终将数据进行处理并分析出结果。软件工程师是比较常见的职业,这是因为软件工程师出现的时间比较长,所以软件分析师是数据分析行业不可或缺的一部分。软件工程师一般负责前端系统以及后端系统,这两个系统的相辅相成对数据的收集处理有一定的帮助,而通过网络以及移动终端和操作系统的发展使得数据更清楚的呈现给其他的岗位。
而统计学家也是数据分析行业中重要的职业。统计人员是整个数据分析工作的最前沿的工作人员,很多数据的提取就是由统计人员找到的数据,并运用统计知识去解决很多行业的问题,统计人员一般使用设计调查,通过设计问卷以及设计实验等方法进行统计,这样才能够搜集好相应的数据。获得了相应的数据,还需要对数据进行轻分析和轻解读的能力,这样才能够把研究好的数据递交给别的岗位。
最后就是数据挖掘工程师数据挖掘工程师就是对于数据的挖掘以及对数据的开发构建等工作。数据挖掘工程师针所面对的就是数据库,负责处理机器与人员提供的数据,从数据中提取出对项目有关的数据以及可能有帮助的数据,这样才能够获得更好 数据分析结果。这就需要数据挖掘工程师掌握很多技能,比如一定的编程能力,掌握各种的机器语言,能够熟练的使用各种数据分析工具,这样才能够把更好的数据交给数据分析团队。
相信大家看了这篇文章以后已经知道了数据分析的职位的相关情况了吧?希望大家在准备进入数据分析这个行业的时候一定要多多了解好这些职位的不同,找到一个适合自己的岗位,这样自己才能够做好自己的本职工作。为国家的数据分析尽一份自己的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04