京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在大数据是一个十分火热的内容,相信大家对于大数据都有一定的了解。数据分析火爆的原因就是由于数据分析这一行业具有未来的前瞻性,正因为如此使得数据分析具有了十分广阔的前景。于是很多人对于数据分析行业是比较向往的,而数据分析行业里面也细分很多职业,那么数据分析行业都有哪些职业呢?一般来说,数据分析行业有数据分析师、数据挖掘工程师、软件工程师以及统计人员等职业。
首先我们说一下数据分析师,数据分析师就是将统计人员以及数据挖掘工程师提供的数据进行处理并分析,这里说的处理就是去除肮脏数据,对数据环境进行净化,这样才能够让数据更加干净。同时数据分析师需要对数据进行分析,将外部数据和内部数据结合在一起,通过建模的形式去并将分析结果以干练简明的形式表达出来,从而满足业务的需求。
然后我们时候说一下软件工程师,软件工程师也是数据分析的重要职位,软件工程师的工作主要就是开发测试以及审核系统的应用方面。重要负责组建程序。最终将数据进行处理并分析出结果。软件工程师是比较常见的职业,这是因为软件工程师出现的时间比较长,所以软件分析师是数据分析行业不可或缺的一部分。软件工程师一般负责前端系统以及后端系统,这两个系统的相辅相成对数据的收集处理有一定的帮助,而通过网络以及移动终端和操作系统的发展使得数据更清楚的呈现给其他的岗位。
而统计学家也是数据分析行业中重要的职业。统计人员是整个数据分析工作的最前沿的工作人员,很多数据的提取就是由统计人员找到的数据,并运用统计知识去解决很多行业的问题,统计人员一般使用设计调查,通过设计问卷以及设计实验等方法进行统计,这样才能够搜集好相应的数据。获得了相应的数据,还需要对数据进行轻分析和轻解读的能力,这样才能够把研究好的数据递交给别的岗位。
最后就是数据挖掘工程师数据挖掘工程师就是对于数据的挖掘以及对数据的开发构建等工作。数据挖掘工程师针所面对的就是数据库,负责处理机器与人员提供的数据,从数据中提取出对项目有关的数据以及可能有帮助的数据,这样才能够获得更好 数据分析结果。这就需要数据挖掘工程师掌握很多技能,比如一定的编程能力,掌握各种的机器语言,能够熟练的使用各种数据分析工具,这样才能够把更好的数据交给数据分析团队。
相信大家看了这篇文章以后已经知道了数据分析的职位的相关情况了吧?希望大家在准备进入数据分析这个行业的时候一定要多多了解好这些职位的不同,找到一个适合自己的岗位,这样自己才能够做好自己的本职工作。为国家的数据分析尽一份自己的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29