
数据分析是一个十分重要的技能,现在很多人都开始关注数据分析这个行业,同时很多的企业也开始重视数据分析。但是有很多人都不是专业的数据分析师,在进行数据分析的工作中容易出现很多的错误,我们在这篇文章中就给大家介绍一下关于数据分析常见的错误,希望大家能够引以为戒。
首先我们给大家说一下数据,数据是人类的发明。人类定义了他们想要测量的现象,设计系统收集数据,在分析之前进行清理和预处理,最后选择如何解释结果。即使使用相同的数据集,两个人也可以得出截然不同的结论。这是因为数据本身并不是能够反应客观现实的、可观察的、可证明的数据。所以说对于数据,我们要格外的重视。大多数被我们成为数据的东西可能是些仅仅是用来支持某种议程的测量、与事实无关的信息集合、或者来自看起来合理、但是带有偏见的收集工作。
而数据分析过程中容易出现的错误有很多,第一就是不明确的目标,具体就是未能确定收集数据的原因,意味着我们将错过阐明假设和确定收集内容的机会。结果是我们可能会收集错误的数据或不完整的数据。大数据的一个共同趋势是企业收集大量信息而不了解他们为什么需要它,以及他们如何使用它。收集庞大而混乱的数据量只会阻碍我们未来的分析,因为我们将不得不通过更多的垃圾来寻找我们真正想要的东西。
第二就是定义错误,假设我们想知道我们的客户上个季度花了多少钱在我们的服务上。即使是这样一个简单的目标也需要在我们得到我们想要的信息之前定义一些假设。首先,取决于我们的目标,我们可能不想把每个人都放到一个桶里。我们可能希望通过购买行为细分客户,以便相应地调整营销动作或产品特性。如果是这样的话,那么我们需要确保我们包含了关于客户的有用信息,例如人口信息或支出历史。还有一些战术上的考虑,我们将需要讨论我们的期望,并设置适当的参数,以收集我们真正想要的信息。
第三就是捕获错误。一旦确定了希望收集的数据类型,就需要设计一种机制来捕获它。这里的错误可能导致捕获不正确的或偶然的、有偏见的数据。例如,如果你想测试产品1是否比产品2更吸引人,但你总是在你的网站上显示产品1,那么用户可能不会频繁地看到或购买2产品,从而导致我们得出错误的结论。
我们在这篇文章中给大家介绍了三种数据分析中常见的错误,分别是不明确的目标、定义错误、捕获错误。我们会在后面的文章中给大家介绍更多需要注意的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04