京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据的分析中,很多分析都是使用相关关系进行分析而不是使用因果进行分析,这就让很多人感到疑惑。不过对此也是情有可原的,因为我们在日常生活中习惯性地用因果关系来考虑事情,所以我们自然就会认为,因果联系是浅显易懂的。不过我们在进行分析的时候还是不太注重这些内容,那到底是怎么回事呢?下面就有小编为大家解答一下这个问题。
因果联系是浅显易懂的,这是毋庸置疑的,很多人认为大数据是需要靠逻辑分析的,那么逻辑就离不开因果联系,但是事实却并非如此。与相关关系不一样,因果联系也很难被轻易证明。我们也不能用标准的等式将因果关系表达清楚。我们需要知道的是结果,而导致结果的原因是什么我们就不那么关注了。
所以,考虑到这些,就需要我们把以确凿数据为基础的相关关系和通过快速思维构想出的因果关系相比的话,相关关系就更具有说服力。但在越来越多的情况下,快速清晰的相关关系分析甚至比慢速的因果分析更有用和更有效。慢速的因果分析集中体现为通过严格控制的实验来验证的因果关系,而这必然是非常耗时耗力的。一般来说,在小数据时代,我们会假想世界是怎么运作的,然后通过收集和分析数据来验证这种假想。在不久的将来,我们会在大数据的指导下探索世界,不再受限于各种假想。我们的研究始于数据,也因为数据我们发现了以前不曾发现的联系。在事实上,就是因为不受限于传统的思维模式和特定领域里隐含的固有偏见,大数据才能为我们提供如此多新的深刻洞见。所以这就是大数据舍弃因果关系的原因。
但是需要给大家说明白的是,大数据时代绝对不是一个理论消亡的时代, 相反地,理论贯穿于大数据分析的方方面面。很多旧有的习惯将被颠覆,很多旧有的制度将面临挑战。所以大数据的出现改变了很多人的思维方式。大数据时代将要释放出的巨大价值使得我们选择大数据的理念和方法不再是一种权衡,也是通往未来的必然改变。
以上的内容就是小编为大家解答的关于大数据分析中为什么舍弃因果分析而使用相关关联分析方式进行分析的内容,想必大家看了这篇文章以后已经知道了这个问题的原因了吧?希望这篇文章能够帮助大家更好地理解大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27