
在上一篇文章中我们给大家介绍了很多机器学习中深层次的基础知识,看起来这是一句十分矛盾的话,但是我们不难发现越往后介绍的知识的理解难度逐渐加大,所以就需要我们对前面的文章提到的知识做到掌握才行,我们在这篇文章中继续为大家介绍机器学习中的其他部分的知识。
(1)归一化就是将值的实际区间转化为标准区间的过程,标准区间通常是-1 到+1 或 0 到 1。
(2)目标就是算法尝试优化的目标函数。
(3)离线推断就是生成一组预测并存储,然后按需检索那些预测。可与在线推断对照阅读。
(4)优化器就是梯度下降算法的特定实现。
(5)异常值就是与大多数值差别很大的值。在机器学习中,异常值有高绝对值的权重、与实际值差距过大的预测值、比平均值多大约 3 个标准差的输入数据的值、异常值往往使模型训练中出现问题。
(6)one-hot 编码就是独热编码。也是一个稀疏向量,其中一个元素设置为 1,所有其他的元素设置为0。独热编码常用于表示有有限可能值集合的字符串或标识符。
(7)一对多就是给出一个有 N 个可能解决方案的分类问题,一对多解决方案包括 N 个独立的二元分类器——每个可能的结果都有一个二元分类器。
(8)输出层就是神经网络的最后一层。这一层包含整个模型所寻求的答案。
(9)过拟合就是创建的模型与训练数据非常匹配,以至于模型无法对新数据进行正确的预测。
(9)pandas是一种基于列的数据分析 API。很多机器学习框架,包括 TensorFlow,支持 pandas 数据结构作为输入。
(10)参数机器学习系统自行训练的模型的变量。而权重是参数,它的值是机器学习系统通过连续的训练迭代逐渐学习到的。可与超参数对照阅读。
(11)参数服务器用于在分布式设置中跟踪模型参数。
(12)参数更新就是在训练过程中调整模型参数的操作,通常在梯度下降的单个迭代中进行。
(13)偏导数就是一个多变量函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定。例如,f(x, y)对于x的偏导数就是 f(x)的导数,y保持恒定。x的偏导数中只有 x 是变化的,公式中其他的变量都不用变化。
在这篇文章中我们给大家介绍了很多的机器学习的概念,这些概念都是十分重要的,如果我们要从事人工智能的工作或者机器学习的工作,那么一定要做好这些知识的储备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28