京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现如今,科技在不断进步,给我们的生活带来了极大的便利。如果要问现在什么科技最能够代表现阶段,大家肯定认为是互联网。不过现在互联网可以说是过去时了,因为人工智能能够给我们带来很多的方便,这也是现在很多科学家热衷于研究人工智能的原因。说到人工智能就不得不说一说机器学习了,关于机器学习要注意很多的内容,下面我们就给大家介绍一下关于机器学习的内容。
我们需要注意的内容就是高维度中直觉不再好用,说完过拟合的问题,接下来要谈的是机器学习中的最大的问题,那就是维度的原因。具体就是指许多在低维度上工作正常的算法在输入是高维度的时候变得难用。但在机器学习中,这里包含的更多。随着示例的维度数,也就是特征数量的增长,泛化变得更加困难,因为固定大小的训练集覆盖了输入空间的一小部分。但是我们还是需要意识到的就是我们的直觉是来自于三维世界,通常并不适用于高维的情况。在高维的情况下,一个多变量高斯分布的质量并不在平均值附近,而是在一个越来越远的壳周围。如果一个常数的例子在高维超级立方体里均匀地分布,在多维度的情况下,大多数例子更接近于超立方体的一个面而不是它们最近的邻居。如果我们用一个超立方体来近似一个超球体,在高维度中几乎所有的超立方体的体积都在超球面之外。这对机器学习来说是个坏消息,其中一种类型的形状通常被另一种类型的形状所近似。这也是限制机器学习发展的一个原因。
在上面的内容中我们不难发现机器学习在高维度中不是很好用,这是因为在二维或三维空间中构建一个分类器很容易。通过视觉检查我们可以找到一个不同类别的例子之间的合理的界限。但在高维度中,很难理解发生了什么。这就使得设计一个好的分类器变得困难。有些人们可能会认为收集更多的特性并没有坏处,他们认为即使是最坏的情况,他们没有提供关于这个类的新信息而已。其实这些优点都被缺陷抵消了而已,并不是没有体现出来。
在这篇文章中我们给大家介绍了有关机器学习的内容,我们在学习机器学习的时候需要注意好在高维度中直觉不再好用,还需要从其他的方面进行考虑,这样我们才能更好地掌握机器学习的要点和重点,不让自己犯低层次的错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16