京公网安备 11010802034615号
经营许可证编号:京B2-20210330
虽然说人工智能现在发展迅速,但人工智能还是处于起步阶段,距离我们想象的人工智能还差的很远。就目前而言,人工智能的发展面临着五大考验,那么这五大考验就叫那个都是什么呢?下面我们就给大家好好介绍一下这些内容。
首先我们说一说人工智能面临的第一个考验,那就是理论知识遇到瓶颈,这是因为目前人工智能在学习上遵循的理论依然是上个世纪80年代提出的,人们并没有从本质上理解人类的学习原理,从监督学习到无监督学习的方法还在探索。目前的人工智能技术多数都要依靠形态匹配,在监督式学习下,输入训练数据,每组训练数据有一个明确的标识或结果。人们将预测结果与训练数据的实际结果进行比较,不断调整预测模型,直到模型的预测结果达到一个预期的准确率。而无监督学习中,计算机无需人类帮助的情况下,像人类一样自己学习知识。计算机并不被告知怎么做,而是采用一定的激励制度来训练机器人培养出正确的分类。无监督学习方式是机器人工智能发展的关键技能之一。
人工智能面临的第二个考验就是知识表达存在问题。这是因为许多输入的数据其实都经过了人脑抽象,但大家看不到,若要完成形式化知识结构的搭建,是需要很多知识的,而机器中没有人脑中的背景知识,所以数据中蕴含的信息是不完整的,继而计算不出正确的结果。如果将这些信息补足,是有可能用机器处理的。但同时要看到的是这些信息很难补足,一方面是因为很多人脑中的知识难以形式化,另一方面,补什么补多少才能达到特定的效果,很难衡量。并且人脑输出的信息带宽太小,很难通过一个人来补足机器中没有的知识,而多人协同又存在知识相互不兼容的问题。所以知识太多,知识难以形式化,人脑输出太慢,成为了知识表达的三大障碍。如果突破了这些难题我们的人工智能才能够更快的发展。
在这篇文章中我们给大家介绍了人工智能面临的考验的一部分内容,具体所指就是人工智能存在理论知识遇到瓶颈、知识表达存在问题这两个考验。由于篇幅原因我们就给大家介绍到这里了,我们在下篇文章中继续为大家介绍更多的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26