京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就目前而言,人工智能是一个十分火爆的事物,当然人工智能的前景优渥,使得很多人都想学习人工智能,但是人工智能的学习是需要大家慎重考虑的,因为它不是一门说学就能立刻上手的学科。在这篇文章中我们给大家讲一讲学习人工智能的建议,希望能够给大家带来帮助。
首先,人工智能的门槛是比较高的,对学习者的要求还是比较高的,首先有一种人不适合学习人工智能,那就是没有自己目标的人不适合学人工智能,如果要学好人工智能一定要打好专业知识基础,学会独立思考,把知识和数据有效结合,去发展新的模式,找准自己的愿景,形成自己“人工智能”的研究方向。所以有自己目标的人更适合学这个专业。
在学习人工智能之前,不管我们将来想做出怎样的成绩,一定要记住四件事,那就是选择重要的选题,做出真正的东西,选择适合自己的研究组,钻研新方向。我们意识到了这些,才能更好地在领域内实现自己的价值,才是读人工智能专业学生应该做的事儿。如果你的目标里没有这些,不想创新,也不想做出有深度有创意的东西,那你也不适合读这个专业。
而对于学校里的学生的建议就是一定要把基础打牢,速成一些东西对长远发展并没有益处。如果想做深度学习方向,一定要对数学有很好的了解。另一方面,企业关注的是实际的能力,是解决问题的能力,所以在把基础打牢后,一定要锻炼动手能力,自己做一些项目,解决问题的能力也是重中之重。如果上大学的目标只是学好理论,死读书,不想动手实践,不去锻炼自己解决问题的能力,那也不合适读这个专业。
当然,人工智能作为一个领域广泛的学科,需要跨学科学习能力强的人,因为现阶段人工智能和事物相结合越来越重要,只有复合型人才,才能真正推动自己所在领域的发展。而有的人虽然学的是人工智能专业,可是如果不愿意跨学科学习,日后也无法走得长远,那还不如一开始就不要读这个专业。这样既浪费了时间,也得不到好处以及长远的发展。
在这篇文章中我们给想学习人工智能的朋友提供了一些建议,大家如果想要学习人工智能,一定要考虑好人工智能需要的条件自己是否能够接受或是否具备学习的这个能力,这样才能够做到对自己的人生负责,不在迷茫或渺茫的道路上浪费人生的青春。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06