
现在大数据是一个十分火热的词汇,也是一个十分高大上的技术,可以说我们正处在大数据时代,大数据飞速发展的时代。现在对于大数据人才的培养的标准也就会高了一些,那么如何培养出高素质的大数据人才呢?下面我们就给大家解答一下这个问题。
大数据人才的培养变化有三方面,第一就是从一专多能变为两专多能、加强大数据相关学科和专业建设、加强大数据的建设。我们这篇文章着重给大家介绍一下从一专多能变为两专多能。
就目前而言,很多科学家大数据挖掘方面的研究。在他看来,大数据人才应系统掌握数据分析相关的技能,主要包括数学、统计学、数据分析和自然语言处理等。具体来说,大数据人才首先应具备获取大数据的能力,例如能根据任务要求,综合利用各种计算机技术和知识,收集、整理海量数据并加以存储,为支撑相关决策和行为做好数据准备。其次,应具备分析大数据的能力,能根据具体需求,采用有效方法和模型分析数据,并形成报告,为实际问题提供决策依据。最后,还应具备良好的团队合作精神。大数据时代的数据分析任务,多数需要与他人合作实现既定目标。这些就是大数据人才的必备的基本素质。
现在看来,从数据科学与大数据技术专业毕业的学生,授予的是理学与工学学位。由此可见,此专业具有非常明显的理工交叉特点。大数据催生了数据科学,而数据科学是处理和分析大数据的理论支撑与保证。因此,高校在制定培养计划和方案时,应注意数学、统计学、计算机科学的有机融合及与应用领域的深入结合。只有这样做,那么大数据专业的人才才会更加出色。
那么大数据的核心价值是什么呢?大数据的核心价值在于应用,而应用需要专业知识与数据思维相结合。然而,大数据的应用能力培养用现行书本教学的方法很难实现。过去的人才多是一专多能人才,放到现在是不够的,今后的大数据人才应为两专多能的人才。那么什么是两专人才呢?所谓两专,是要有专业知识,更要有数据思维。要达到这样的目的,必须改革现行的人才培养方式,鼓励用多种形式培养跨界人才。
大数据的人才需要有两专才能够更好地进行大数据工作,这样做也是为了大数据的发展。由于篇幅原因我们就给大家讲到这里了,我们在下一篇文章中接着给大家讲一下其他的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04