京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在前面的文章中我们给大家介绍了Python受欢迎的部分原因。当然,这些还不是Python受欢迎的所有原因,我们在这篇文章中继续给大家介绍Python受欢迎的原因,希望这篇文章能够帮助到大家。
我们都知道,人工智能离不开Python,如果掌握了Python能够做好大数据的工作, 而就目前而言,人工智能人才需求翻倍从具体职位来看,人工智能相关的职位需求增幅排在最前。由于大批公司涉足AI领域,人才需求直线上升,大部分岗位三年复合增长率超过200%。AI应用层职位需求增速尤为显著,增速最高的三个岗位依次是算法工程师、语音识别和图像处理。而这三个岗位都是需要学习Python。而大数据类职位需求增幅仅次于AI岗位。眼下,几乎所有互联网企业均把数据人才列为团队标配。许多公司在数据层面增加投入,大量招募具有算法和建模能力的人才,力求通过数据沉淀与挖掘更好地推进产品的迭代。数据架构师、数据分析师成为企业争抢对象,这两个职位同样也需要Python的学习的。
当然,关于AI同样也是需要Python这个工具的,在2017年中,薪资最高的十个职位中,一大半为AI类岗位。语音识别、NLP、机器学习等职位平均薪资超过2.5万元,远高于一般互联网职位。在部分大公司,60万年薪加期权股票只是争抢高级AI人才的低配标准。同时我们注意到,50%的人工智能岗位的职位描述上会明确提到为员工提供股票期权,这一比例显著高于其他职位。同时,我们从数据中可以看到,新兴技术岗位薪资涨幅惊人。图像算法、推荐算法、深度学习岗位薪资增幅均在15%以上,大数据类岗位仅次于人工智能。所以,我们如果想要进入薪资高的行业,那么肯定的离不开Python的学习。
从过去到现在,通用类岗位程序员由于从业人数不断上升,人才稀缺程度大幅缓解,过去几年格外吃香的PHP、iOS等职位招聘薪资在都出现了下调,这就说明了需求得到了环节,而现在主要流行的就是大数据和数据分析,这两个工作岗位的基本要求就是精通Python。
所以说,我们如果要想找到一个高薪工作,那么一定要顺势而为,努力序学好Python。现在是大数据和数据分析流行的时代了,这两个岗位需要什么,我们就学什么,这样我们就能够找到一个高薪的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27