
在上面的文章中我们给大家介绍了大数据以及数据挖掘给金融行业带来的改变以及数据挖掘中的算法内容,而数据挖掘的算法内容有很多,我们在上面的文章中只给大家介绍了两种,在这一篇文章中我们继续给大家介绍更多的内容。
首先就是支持向量机和多目标线性规划,支持向量机和多目标线性规划都是基于最优化数据挖掘的方法。在解决小样本、非线性及高维模式识别中表现出很多特定优势,能够推广到各种分类问题。目前最优化数据挖掘方法已经在个人信用评分、客户流失管理、金融衍生品结算风险管理等金融大数据挖掘项目中成功应用。而聚类算法主要有层次化聚类算法、划分式聚类算法、基于密度和网格的聚类算法。K-means 方法将n 个对象根据它们的属性分为K个簇。可能大家听说过最有名的就是啤酒与尿布的购物案例,其实这个案例就是关联规则中的案例,而在金融领域中,借鉴这样的思想实现捆绑营销并非难事。关联规则算法中最流行的Apriori 算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法,能够找到所有支持度大于最小支持度的项集,即频繁项集。
当然,在数据挖掘的方法和技术中很多都是可以应用于大数据时代企业决策模式的重新制定。其中最重要的方法之一是跨行业数据挖掘过程标准。它是一个通用的数据挖掘框架,已普遍被许多数据分析的软件公司采用。在大数据背景下可以适用,只不过处理的是更大、更复杂的大数据。
那么数据挖掘在银行业有什么用途呢?在银行业,大数据时代再次挑战了银行的数据驾驭能力。除了传统的结构化数据,来自物联网、互联网的非结构化数据将彻底颠覆银行收集各类数据的理念和现有的方法。而在处理数据方面,非结构化数据,例如客户录音数据等等难以用传统的方法描述,度量、计算、处理难度都大。
通过这篇文章想必大家已经知道了数据挖掘的部分算法的实际内容以及数据挖掘在银行业的用途了。在银行业中,数据挖掘起到了一个非常大的作用,这一点都是有目共睹的。当然,在数据挖掘的不断发展中,相信数据挖掘能够给我们带来更多的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22