京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上面的文章中我们给大家介绍了大数据以及数据挖掘给金融行业带来的改变以及数据挖掘中的算法内容,而数据挖掘的算法内容有很多,我们在上面的文章中只给大家介绍了两种,在这一篇文章中我们继续给大家介绍更多的内容。
首先就是支持向量机和多目标线性规划,支持向量机和多目标线性规划都是基于最优化数据挖掘的方法。在解决小样本、非线性及高维模式识别中表现出很多特定优势,能够推广到各种分类问题。目前最优化数据挖掘方法已经在个人信用评分、客户流失管理、金融衍生品结算风险管理等金融大数据挖掘项目中成功应用。而聚类算法主要有层次化聚类算法、划分式聚类算法、基于密度和网格的聚类算法。K-means 方法将n 个对象根据它们的属性分为K个簇。可能大家听说过最有名的就是啤酒与尿布的购物案例,其实这个案例就是关联规则中的案例,而在金融领域中,借鉴这样的思想实现捆绑营销并非难事。关联规则算法中最流行的Apriori 算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法,能够找到所有支持度大于最小支持度的项集,即频繁项集。
当然,在数据挖掘的方法和技术中很多都是可以应用于大数据时代企业决策模式的重新制定。其中最重要的方法之一是跨行业数据挖掘过程标准。它是一个通用的数据挖掘框架,已普遍被许多数据分析的软件公司采用。在大数据背景下可以适用,只不过处理的是更大、更复杂的大数据。
那么数据挖掘在银行业有什么用途呢?在银行业,大数据时代再次挑战了银行的数据驾驭能力。除了传统的结构化数据,来自物联网、互联网的非结构化数据将彻底颠覆银行收集各类数据的理念和现有的方法。而在处理数据方面,非结构化数据,例如客户录音数据等等难以用传统的方法描述,度量、计算、处理难度都大。
通过这篇文章想必大家已经知道了数据挖掘的部分算法的实际内容以及数据挖掘在银行业的用途了。在银行业中,数据挖掘起到了一个非常大的作用,这一点都是有目共睹的。当然,在数据挖掘的不断发展中,相信数据挖掘能够给我们带来更多的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08