京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不管是大数据还是数据挖掘,都离不开聚类分析,而聚类分析是数据挖掘中最经典的一种算法之一,也是数据挖掘工作的基础,同样也是数据挖掘的关键技术。那么什么是聚类分析呢?聚类分析能够为我们带来什么?聚类算法都有哪些?下面我们就给大家介绍一下这些内容。
首先给大家说一说什么是聚类分析,所谓聚类分析就是将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程,其目的是在相似的基础上收集数据来分类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。聚类与分类的不同还在于,聚类所要求划分的类是未知的。我们可以通过聚类分析去解决更多的数据挖掘中的问题。
由此,我们不难发现聚类分析的重要性了吧,就目前而言,现在各行各业的大数据或宏观或微观的任何价值发现,无不借助于大数据聚类分析的结果,因此,数据分析和挖掘的首要问题是聚类,这种聚类是跨学科、跨领域、跨媒体的。大数据聚类是数据密集型科学的基础性、普遍性问题。而如果要想突破认知的话,那么就需要掌握聚类,可以这么说,聚类是挖掘大数据资产价值的第一步。
那聚类的算法都有哪些呢?聚类的算法有很多,我们首先说一说基于划分聚类算法的内容,基于划分聚类的算法有很多。聚类算法中的CLARA算法在PAM的基础上采用了抽样技术,能够处理大规模数据;k-means是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚点不一定是聚类中的一个点,该算法只能处理数值型数据;K-Means算法的扩展,采用简单匹配方法来度量分类型数据的相似度;k-prototypes算法就是结合了K-Means和K-Modes两种算法,能够处理混合型数据;k-medoids就是在迭代过程中选择簇中的某点作为聚点;Focused CLARAN就是采用了空间索引技术提高了CLARANS算法的效率;PCM就是模糊集合理论引入聚类分析中并提出了PCM模糊聚类算法。
我们在这篇文章中给大家介绍了很多的聚类分析知识以及聚类分析的算法内容。文中我们提到,聚类类似于分类,但两者的不同之处在于分类的目的不同,聚类是针对数据的相似性和差异性而言的。聚类基于其跨学科、跨领域的特性,因此它的的价值是极高的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26