京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析研究院原创作品,转载要授权哟
前段时间考研结束,衷心祝愿那些奋斗数载的小伙伴们可以考到自己梦寐以求的大学。人生短暂,人间美好,希望通过努力奋斗你我都可以体会到生活的点点滴滴。
开头说点题外话哈哈哈,今天呢,小编想跟大家分享的是那些超级好用的数据分析软件,好用到吹爆它,恨这么晚才遇见。
菜单式操作软件
电子制表软件一哥:Excel
Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的计算机编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。
事实上,当数据量不大,我们常作为平日里数据预处理的一个首选菜单式软件,快速填充、缺失值填补、数据格式规范化等等,另外,excel强大的文本和数值处理函数也让它在表格软件地位不可撼动。
市场调查的宠儿:SPSS
SPSS是统计产品与服务解决方案(Statistical Product and Service Solutions)的简称,为IBM公司的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称。同样是菜单式软件spss和excel有什么区别呢,正如我给SPSS的帽子:市场调查的宠儿。SPSS里有一套完整的统计分析模块,菜单式的步骤操作也让非统计学专业的人可以自己实现一套统计分析,另外数据结果输出窗口、数据编辑窗口的分开式安排也让我特别喜欢,不像excel全部放在一个sheet里。
中小型网站数据库恋人:MySQL
MySQL在过去由于性能高、成本低、可靠性好,已经成为最流行的开源数据库,因此被广泛地应用在Internet上的中小型网站中。随着MySQL的不断成熟,它也逐渐用于更多大规模网站和应用,比如维基百科、Google和Facebook等网站
什么?数据库也能做数据分析?当然这里的数据分析不是深层次的使用统计分析或者算法进行挖掘和建模,这里的分析更多是提取有特定条件的数据,对数据进行一个简单的摘要统计。
编程语言式软件
统计学人自己的工具:R
R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。
R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。
基本上学统计学的学生都会使用R 语言做统计分析,R有一个很鲜明的地方就是R内置多种统计学及数字分析功能。
R的功能也可以透过安装包增强(各种领域,实现各种分析功能的包真的是应有尽有)。因为S的血缘,R比其他统计学或数学专用的编程语言有更强的面向对象。
R的另一强项是绘图功能,制图具有印刷的素质,也可加入数学符号,所以R语言也可作为可视化工具。
数据分析网红:python
对于python,数据科学的大佬真的视若掌上明珠,什么“人生苦短,我学python“,什么“学python,养发护肝”。推特上充满了愉悦的气味(滑稽)。
Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多重继承,有益于增强源代码的复用性。Python支持重载运算符,因此Python也支持泛型设计。
可是作为胶水语言的python原生语句用来做数据分析可远远不够格,pandas库的开发和更新让python一下子变成数据分析的流量小生,另外,scikit-learn机器学习库也让数据分析师对其偏爱。
Duang,目前以上的数据分析学习软件CDA数据分析研究院都有相关课程的开设哟,欢迎各位宝宝前来探寻。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06