
说到数据分析师这个职业,很多人都认为数据分析师需要一个十分缜密的思维,有这种想法的原因就是数据分析师在分析数据的时候需要多多的思考,多沟通,只有不断的思考才能够做好数据分析工作。其实这种想法并不是完全正确的,数据分析师们都有不同的数据分析思维以及不同的知识水平,相对思维培养来说,学习知识是比较重要的,那么如何提高数据分析思维能力呢?下面就由小编为大家解答一下这个问题。
当然,数据分析思维不是一天就能够培养成的,是需要结合自己的工作经验,通过不断的遇到问题、解决问题、得出经验结论的一个长期过程。但是我们可以通过一些方法去提高自己的数据分析能力。这些方法就是多去研究数据、多读书并总结、多观察趋势。这些方法都可以提高数据分析思维能力。
首先说说多研究数据,我们通过研究数据,做到举一反三,才能够提高数据思维能力。一般来说,数据分析师经常面临跨领域,存在多种学科知识交错。作为企业数据分析师,从公司业务、财务状况、运营活动等等都要熟悉,因此,多研究数据、分析数据。另外分析数据和别人的数据分析方式存在的哪种不同,不断的总结,才能够提高数据分析能力。当然,这些还是不够的,我们还需要学会举一反三的能力,透过一个点想到一个面,找到值得借鉴的东西,即使错误,我们也都可以很好感知。
其次说说多读书。我们可以通过读书去提高自己的思维能力,这就需要我们在读书的时候要带着目的性去读书,若想训练逻辑思维,可以系统多看一些案例,看看别人是怎么思考,找出自己的不足点,借鉴别人的思维方式,从而提高自己的数据分析思维。大家在读书的时候需要意识到一个问题,就是读书是一个过程,不可能一蹴而就,学会思考找差异是重点,久而久之,便能多角度深层次去考虑问题。
最后说说多观察趋势,大家都知道,现在的时代不断的发展,我们在学习数据分析思维的时候还是需要用以往的思维方式去思考新兴的事物,如果不能得到一个合适的结果,那么我们就需要从别的角度看待问题。一般来说,数据分析师虽不是运营或决策者,但数据分析师所做的工作往往会成为公司运营、决策的指南针。因此,数据分析师要有一根敏感的思维神经,需要时常关注经济、社会新闻动向,这就是古诗说的世间处处皆学问,人情练达即文章。
看到了这里想必大家已经知道了这些问题的具体解答方式了吧?大家在进行数据分析的时候还是需要重视数据思维的培养,这样才能够成为一个合格的数据分析师。其实学习数据分析师,入门并不难,只要我们有一个缜密的思维,那么我们就能够做好数据分析工作,最后祝愿大家早日成为数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03