
在前面的文章中我们给大家简单介绍了一下对于Python与R两门语言的选择。一般来说,数据分析中对于这两门语言都是比较重视的,如果学会了这两门语言那么就能够做好数据分析工作,从而成为高级数据分析师。但是毕竟人的精力是有限的,短时间内不可能都掌握好这两门语言,所以我们通过给大家介绍一下这两门语言给大家一个参考,这样方便大家选择出一个适合自己的语言。
首先说说Python吧,Python语言是由 Guido van Rossum 在八十年代末和九十年代初,在荷兰国家数学和计算机科学研究所设计出来的。经过近三十年的发展,Python语言具有易于学习、易于阅读、易于维护、可移植、可扩展、可嵌入等特点。尤其是随着机器学习、人工智能的发展,Python作为一门人工智能语言备受青睐。通过大规模的调查,我们发现Python语言是十分容易上手的,不过精通Python语言不是一个很容易的事情。
然后说收R语言吧。R是一门用于统计计算和作图的语言,受S语言影响发展而来。R语言最初由新西兰奥克兰大学统计系的Robert Gentleman和Ross Ihaka合作编写。自1997年开始,R语言开始由一个核心团队开发,团队成员来自世界各地的大学和研究机构。R语言是针对统计的一种语言,是一个非常实用的语言。
那么这两种语言有什么特点呢?我们通过对比了解一下。首先Python和R两门语言有多平台适应性,很多的系统都可以使用,并且代码可移植性强;在数据分析和数据挖掘方面Python和R语言都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法;Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。
而R是在统计方面比较突出。Python和R比较贴近MATLAB以及minitab等常用的数学工具;在数据结构方面,由于是从科学计算的角度出发,R中的数据结构非常的简单,主要包括向量、多维数组、列表、数据框。而 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制。最重要的一点就是 Python与R相比速度要快。Python可以直接处理上G的数据,但是R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析。
以上的内容就是小编为大家整理的数据分析中的语言特点了,不要走开,我们会在下一篇文章中给大家讲述一下这两种语言的应用场景以及学习成本,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29