京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在前面的文章中我们给大家简单介绍了一下对于Python与R两门语言的选择。一般来说,数据分析中对于这两门语言都是比较重视的,如果学会了这两门语言那么就能够做好数据分析工作,从而成为高级数据分析师。但是毕竟人的精力是有限的,短时间内不可能都掌握好这两门语言,所以我们通过给大家介绍一下这两门语言给大家一个参考,这样方便大家选择出一个适合自己的语言。
首先说说Python吧,Python语言是由 Guido van Rossum 在八十年代末和九十年代初,在荷兰国家数学和计算机科学研究所设计出来的。经过近三十年的发展,Python语言具有易于学习、易于阅读、易于维护、可移植、可扩展、可嵌入等特点。尤其是随着机器学习、人工智能的发展,Python作为一门人工智能语言备受青睐。通过大规模的调查,我们发现Python语言是十分容易上手的,不过精通Python语言不是一个很容易的事情。
然后说收R语言吧。R是一门用于统计计算和作图的语言,受S语言影响发展而来。R语言最初由新西兰奥克兰大学统计系的Robert Gentleman和Ross Ihaka合作编写。自1997年开始,R语言开始由一个核心团队开发,团队成员来自世界各地的大学和研究机构。R语言是针对统计的一种语言,是一个非常实用的语言。
那么这两种语言有什么特点呢?我们通过对比了解一下。首先Python和R两门语言有多平台适应性,很多的系统都可以使用,并且代码可移植性强;在数据分析和数据挖掘方面Python和R语言都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法;Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。
而R是在统计方面比较突出。Python和R比较贴近MATLAB以及minitab等常用的数学工具;在数据结构方面,由于是从科学计算的角度出发,R中的数据结构非常的简单,主要包括向量、多维数组、列表、数据框。而 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制。最重要的一点就是 Python与R相比速度要快。Python可以直接处理上G的数据,但是R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析。
以上的内容就是小编为大家整理的数据分析中的语言特点了,不要走开,我们会在下一篇文章中给大家讲述一下这两种语言的应用场景以及学习成本,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26