
通过前面的内容我们不难发现,数据分析需要学习很多的知识,比如数据分析中的AARRR模型以及漏斗模型。当然,这是针对数据分析的,但是对于数据展现也是需要学习很多的知识,这些知识主要在于图表,分别是柱状图、折线图、饼状图、散点图、气泡图、雷达图,这些图大家都是需要掌握的,下面就由小编分别为大家解释一下。
首先说说柱状图,柱状图是最常见的图表,适用场合是二维数据集,但只有一个维度需要比较。柱状图就是利用柱子的高度,反映数据的差异。肉眼对高度差异很敏感,辨识效果非常好。柱状图的局限在于只适用中小规模的数据集。
第二给大家说一说折线图。折线图适合二维的大数据集,尤其是那些趋势比单个数据点更重要的场合。折线图还适合多个二维数据集的比较。
然后给大家说说饼状图。首先需要提醒大家的是,饼图是一种应该避免使用的图表,这是因为肉眼对面积大小不敏感。我们如果使用饼状图的时候,可以使用柱状图进行代替,当然,如果是存在某一事物中的个体所占比例,那么就需要使用饼状图了。
接着给大家说说散点图。散点图适用于三维数据集,但其中只有两维需要比较。当然,我们为了识别第三维,可以为每个点加上文字标示,或者不同颜色。这样就能够很容易的将不同维度的数据进行区分出来。
然后给大家说说气泡图,所谓气泡图就是散点图的一种变体,通过每个点的面积大小,反映第三维。点的面积越大,就代表强度越大。因为用户不善于判断面积大小,所以气泡图只适用不要求精确辨识第三维的场合。如果为气泡加上不同颜色,当然文字也是可以的。气泡图就可用来表达四维数据。
最后给大家说说雷达图,雷达图适用于多维数据,当然必须在四维以上,且每个维度必须可以排序。但是,它有一个局限,就是数据点最多6个,否则无法辨别,因此适用场合有限。需要注意的时候,用户不熟悉雷达图,解读有困难。使用时尽量加上说明,减轻解读负担。
所以大家在进行数据展现的时候一定要注意好图的选择,越简单的图表,越容易理解,这样可以快速易懂地理解数据。所以,请不要小看这些基本图表,因为用户最熟悉它们,只要是适用的场合,就应该考虑优先使用。希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01