京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人看到了数据分析行业的火爆以及高薪工作,开始跃跃欲试想进入数据分析行业。但是不少人对于数据分析行业不是很清楚,不知道需要掌握什么相关知识以及如何学习,下面就为大家解答这个问题,大家在学习数据分析的时候一定要注意好下面提到的内容,这样才能够学好数据分析。
首先说一下数据分析总的基础知识,我们在学数据分析的基础知识需要注意好学科知识,学科知识包括很多,比如统计学、数学、社会学、经济金融、计算机等内容,下面就给大家具体讲解一下这个内容:统计学需要学习参数检验、非参检验、回归分析等知识;数学需要学习线性代数、微积分等知识;社会学主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助;如果是从事这个行业的数据分析人员,经济金融知识是必须的;从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,还能有足够的能力从数据库里提取你需要的数据(比如使用SQL进行查询),这种提取数据分析原材料的能力是每个数据从业者必备的。这些专业知识不是一时半会能够全面掌握的,学习的唯一捷径就是看书、看视频讲解,看权威的书籍、看全面的知识。
然后说说软件操作,在进行数据分析工作的时候一定要会使用数据分析的工具,这样才能够提高数据分析的效率。一般数据分析软件有Microsoft Office软件,比如excel、word、powerpoint。SPSS、SAS、R、MatlabMindManager、MindMapper等等。在此需要说明的一点是:软件只是帮助我们完成任务的工具。并不是我们只要学好的软件操作就能很好地完成任务,因为与操作相比,如何解释最后的结果要重要的多。
最后就是行业知识与工作经验:做数据分析一定得和自己所从事的行业紧密相关,不结合业务的数据分析无异于纸上谈兵。而需要要用到数据分析的行业又多的数不清,一句话,只要有数据的地方就需要有数据分析。
以上的内容就是如何学习数据分析需要注意的地方了,大家在学习数据分析的时候一定要注意好上面提到的内容,这样才能够做好数据分析的工作,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21