
作者 | Jo Stichbury
翻译 | Mika
本文为 CDA 数据分析师原创作品,转载需授权
前言
如今人工智能备受追捧,由于传统软件团队缺乏AI技能,常常会遇到一些挑战。越来越多的企业都开始对人工智能进行投资,并在寻找具有AI技能的人才。
随着市场对AI人才的需求不断增长,许多机构都开始提供相应的培训课程,而且价格和质量各不相同。与其他所有学习一样,在投入大量精力和金钱后,你当然不希望发现浪费了时间却没学到应获得的技能。
那么对于想入门人工智能的人群来说,应该从哪儿开始呢?
本文列出了一些优质AI学习资源。希望在阅读本文后,能帮助你顺利开启AI学习之旅。
在线课程
Udacity
当斯坦福大学教授Sebastian Thrun和Peter Norvig将他们的“人工智能导论”课程免费发布到网上时,Udacity开始了在线课程的尝试。之后Udacity吸引了超过190个国家的16万名学生,并提供AI等一系列技术课程。最近还加入了飞行汽车、无人驾驶汽车和机器人技术领域的一系列“纳米学位”课程,这些课程可以在六个月左右完成,具体取决于你的时间安排,每周需要花10到20个小时。
这些纳米学位课程收费较贵,如果你不想花钱的话,也有许多免费的课程,比如Introduction to AI 和 Introduction to Machine Learning等。
Kaggle
Kaggle是一个数据科学家社区。拥有一个公共数据平台,你可以在其中找到一些有趣的数据集,Kaggle根据数据举办了相关的机器学习比赛。当中也有一些学习资料,这些材料简短但全面,涵盖了机器学习和深度学习等领域。课程强调实用技能而不是抽象理论,所以一开始你就需要动手编程。因此它适合有一定Python基础的初学者,也适合数据科学家来扩展他们的机器学习工具包。
Microsoft和EdX
Microsoft在EdX上的提供了AI专业课程Microsoft Professional Program in AI。该课程旨在面向有抱负的工程师,从人工智能的基本概念入门到掌握为人工智能解决方案构建深度学习模型所需技能。当中提供十门课程,加上一个顶点项目,这些课程都是免费的,如果你需要认证证书则需要付费。当中包含的课程很不错,例如AI所需的数学基础入门,以及数据分析中的伦理学和法律课程。
Coursera
部分课程资料是免费提供的,但若想获得证书必须付款。当中最著名和最受推崇的课程之一就是吴恩达的斯坦福机器学习课程。
其他的Coursera课程在7天免费试用之后会收取费用,你可以免费收看课程视频等内容。在这些课程中,我推荐以下这几个好评最多的课程。
Machine Learning with TensorFlow on Google Cloud Platform Specialization
Advanced Data Science with IBM (as described by Bartleby of the Economist)
NVidia and deeplearning.ai deep learning specialization.
fast.ai
Practical Deep Learning for Coders这一课程在实践性的学习方法方面获得很多好评。
斯坦福大学课程
斯坦福大学的课程在AI领域有极高的声誉。部分课程可以在YouTube上看到,例如卷积神经网络用于视觉识别 (CS231n Convolutional Neural Networks for Visual Recognition)。
Hugo Larochelle的网站包含大量有关深度学习的内容链接,你可以根据自己感兴趣的领域进行学习。
其他资源
Norvig 和Russell的Artificial Intelligence: A Modern Approach 是一本很棒的人工智能书籍。
Peltarion团队写了一本小型电子书 The essential AI handbook for leaders 是很不错的选择,在入门AI时如果没有明确的方向,那么这本书是很好的起点。
超越 AI:Python和统计
如果你打算亲身体验AI,而不仅仅是了解基础知识,那么你需要学习一些编程,因此你很可能会使用到Python。它不仅是一门优秀的语言,而且关于Python还有很多课程和免费书籍:
Kaggle有一个免费的Python课程,学习总时长需14个小时以上,当中包括Python的基础知识。
Udacity上有许多Python的免费课程,包括教授使用NumPy和Pandas库的数据分析入门课程。
以下是Coursera的一些课程:
An introduction to interactive programming with python
Programming for everybody
如果想掌握数据科学背后的数学知识,那么可汗学院是一个不错的选择。当中有不同级别的课程,能够帮助你掌握最困难的概念。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01