
作者: Harrison Jansma
编译: Mika
CDA 数据分析师原创作品,转载需授权
在过去的一年里,我自学了数据科学。我学习了数百个在线资源课程,每天学习6-8个小时,同时还在做一份兼职工作谋生。
我的目标是在缺乏资金的前提下,从事我热爱的数据科学职业。
在过去几个月里,我取得了很多成就。我发布了自己的网站,并获得了一个很不错的计算机科学研究生课程奖学金。
在本文中,我总结了自己是如何自学数据科学的,希望能给你有所帮助,让你更加顺利地开启自己的数据科学职业生涯。
注意,本文中我所说的“数据科学”指的是,那些将数据转化为现实行动的工具集合。当中包括机器学习、数据库技术、统计、编程和特定领域技术。
资源推荐
互联网上资源纷乱复杂,试图从中学习有时会让人无从下手。
Dataquest,DataCamp和Udacity等网站都提供不错的数据科学知识。它们都有相应的课程计划,都能让你系统地进行学习。
但问题在于,以上这些网站课程太贵了。而且没有教你如何在工作环境中应用概念,同时还限制你进行自我探索。
edX和coursera上的课程是免费的,并且设有针对特定主题的课程。如果你善于从视频或课堂环境中学习,这些都是学习数据科学的绝佳方式。
免费在线教育平台
以下列出了许多不错的数据科学课程,当中有些课程是免费的。
https://www.class-central.com/subject/data-science
如果你喜欢跟着书学习,那么可以看到这本教材。
Data Science From Scratch
http://math.ecnu.edu.cn/~lfzhou/seminar/[Joel_Grus]_Data_Science_from_Scratch_First_Princ.pdf
为了让你更明确在数据科学中需要掌握哪些技能,在下一部分中,我将详细介绍具体的课程计划指南。
数据科学课程指南
Python编程
编程是数据科学家的基本技能。你需要熟悉Python的语法,了解如何以多种不同的方式运行python程序。(Jupyter notebook VS 命令行 VS IDE)
我花了大约一个月的时间来学习这些Python文档,以及CodeSignal上的编程挑战。
https://docs.python.org/3/tutorial/
https://docs.python-guide.org/intro/learning/
统计与线性代数
这是进行机器学习和数据分析的先决条件。如果这方面你有不错的基础,建议花一两个星期来梳理关注概念。
特别注意描述性统计。能够理解数据集是一项非常重要的技能。
Numpy,Pandas,Matplotlib
学习如何加载、操作和可视化数据。掌握这些库对你的个人项目至关重要。
可以查看相关教程,这些都是我用过的。
http://pandas.pydata.org/pandas-docs/stable/
https://docs.scipy.org/doc/numpy/user/index.html
https://matplotlib.org/tutorials/index.html
请记住,学习这些库的唯一方法就是使用它们!
学习机器学习算法的理论和应用。然后将学到的概念应用于真实数据上。
大多数初学者会从使用UCI ML Repository的数据集开始,使用数据并浏览机器学习教程。
Scikit-learn文档具有出色的算法应用教程。
http://scikit-learn.org/stable/
生产系统
工作意味着获取实际数据并将其转化为行动。为此,你需要学习如何使用业务资源来获取、转换和处理数据。
亚马逊网络服务,谷歌云,微软Azure
这是数据科学课程中最基础的部分。主要是因为你使用的特定工具取决于你要进入的行业。
但是,数据库操作是必需的技能。你可以在ModeAnalytics或Codecademy上学习如何用代码操作数据库。你还可以在DigitalOcean上实现自己的数据库。
另一个需要的技能是版本控制。你可以创建GitHub帐户,并命令行每天提交代码来轻松获得此技能。
在考虑学习其他技术时,重要的是认识到你的兴趣是什么。如果你对Web开发感兴趣,那么关注该行业中公司使用的工具。
学习建议
1. 学习概念时要有主次
网上的学习资源很多,因此在线学习时很容易走弯路。
当开始研究某个主题时,你需要牢记自己目标。否则你将忘记初衷,被其他的内容吸引注意力。建议有效地整理和存储资源,从而更专注目前需要掌握的技能。
目前我的Chrome书签栏
如果你这样做,你保持有序的学习路径,将注意力集中在目前应关注的内容,避免分心。
2. 不要着急。学习是跑马拉松,而不是百米冲刺。
如果你要在数据科学领域取得成功,你需要不断地学习。请记住,学习过程就是回报。
在整个学习过程中,你将探索自己感兴趣的内容,你对自己的了解越多,你学习的乐趣就越多。
3. 学习,应用,重复
不要只学习一个概念,然后学习下一个概念。学习过程不会停止,直到你可以将概念应用于现实情况。
4. 建立个人作品集,向他人展示自己的技能
怀疑主义是你在学习数据科学时将面临的最大逆境之一。这可能来自其他人,也可能来自你自己。
因此,在学习数据科学时,个人简历是很重要的一环。这能让你找到理想的工作,成为更自信的数据科学家。
在作品集中包含你引以为荣的项目。你是否从头开始开发过Web应用程序吗?你有自己的IMDB数据库吗?你是否写过有趣的医疗保健数据数据分析?把这些罗列在作品集中。
这是我的作品集,存储在GitHub上是一个不错的选择,其中可以包含摘要页面和相关的项目文件。
5. 数据科学+ ____ =充满激情的职业
数据科学是能够改变世界的工具。数据科学的应用是无穷无尽的,因此你需要找到你的兴趣所在。
如果你找到自己感兴趣的内容,你将更愿意投入其中完成项目。
在学习的过程中,请留意那些让你感兴趣的项目或想法。
发现你所热衷的领域后,你会更系统地学习该领域所需的技能和专业知识。
结论
进入数据科学行业并不容易。为了激励自己继续学习,你需要毅力和自控能力。数据科学家需要时刻具有好奇心,并热衷于寻找答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18