
数据分析离不开数据采集。数据采集包括历史数据的采集和当前市场数据的采集,是科学进行数据分析的基础。数据采集准确性决定了数据分析的价值。那么数据采集是怎么做的呢?一般来说,是需要制定市场研究的计划、明确数据的来源、明确抽样方案、明确数据采集方法、做好数据处理分析工作这四项工作。
1.制定市场调研的计划
在进行数据分析之前,数据采集工作是一项最重要的工作,数据采集的工作能够解决企业经营中在数据分析中的决策问题。因此很多企业非常重视数据采集,但是数据采集是需要花费大量的金钱人力以及物力,不过数据采集能够给数据带来极大的好处,这是因为数据采集能够给大数据分析带来极大的好处。所以,在数据采集工作的时候一定要让资金花到有用的地方,对于每一分钱都有一个清楚的去向。所以,在数据采集的时候一定要控制好成本,在做数据采集工作之前一定要控制到成本,只有做好周密的市场调研计划,才能够好好的做好数据采集这一个工作。
2.明确数据来源
在数据采集前,就需要选择好数据,选择一些干净的数据才能够使得数据分析工作变得更加精准。通常来说,数据的资料一般分为第一手资料和第二手资料。这是根据数据资料的来源不同来决定。什么是第一手资料呢?第二手资料是什么呢?第一手资料就是未来某种目的采集所得的原始材料。一般来说,采集第一手资料所需要的费用比较高,但是第一手的资料的准确性很高,这是因为第一手资料的针对性强。第二手资料是指采集的现成资料。现成资料就是包括互联网上面的信息,各种报刊书本上的资料,还有各类权威机构发布的统计和研究报告等。
3.明确抽样方案
在一手数据的采集中,许多数据可以直接采集,由于对于成本费用等可控制的要素,以及数据的采集范围很广,这样很难直接获取全部数据。这时,我们常用抽样技术对样本进行调查,并根据样本统计量估计总量。
4.明确数据采集方法
数据采集方法现在常见的有三种,分别是访问调查法、实验法和观察法。访问调查法通过访问代表性的样本而获得数据,而观察法强调非语言方式,这一点和访问调查法不一样。观察法是通过调查人员在进行时和过去时记录中采集信息。而实验法可以有效控制调查的环境。这样在实际项目数据采集中可以根据项目特点、成本费用、时间及精度的要求,从而使用不同的方法。
5.数据处理及分析
在进行数据处理工作时,原始数据收集回来很大概率会出现虚假、错误、冗余等现象,如果直接把这些数据进行预测分析,极大概率会带来错误的分析结论,那么数据分析就完全没有了意义。不过只要做好数据处理以及数据分析,就能避免上面出现的现象。而数据的处理是需要运用科学正确客观的方法,将调查所得的原始资料按调查目的来去粗取精,这样才能够做好数据分析。
通过上面的内容,大家已经知道了数据采集是怎么做的了吧?数据采集程序就是上面提到的5点,分别是制定市场研究的计划、明确数据的来源、明确抽样方案、明确数据采集方法、做好数据处理分析工作。只要集齐这些步骤一步一步走下去,那么数据采集工作就可以更高效率地完成了。希望阅读完的朋友对你们的职业生涯有一些帮助,这将是我莫大的荣幸!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04