
深入理解Python变量与常量
变量是计算机内存中的一块区域,变量可以存储规定范围内的值,而且值可以改变。基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中。常量是一块只读的内存区域,常量一旦被初始化就不能被改变。
变量命名字母、数字、下划线组成,不能以数字开头,前文有说不在赘述。
变量赋值
Python中的变量不需要声明,变量的赋值操作即是变量的声明和定义的过程。每个变量在内存中创建都包括变量的标识、名称、和数据这些信息。
Python中一次新的赋值,将创建一个新的变量。即使变量的名称相同,变量的标识并不同。
x = 1 #变量赋值定义一个变量x
print(id(x)) #打印变量x的标识
print(x+5) #使用变量
print("=========华丽的分割线=========")
x = 2 #量赋值定义一个变量x
print(id(x)) #此时的变量x已经是一个新的变量
print(x+5) #名称相同,但是使用的是新的变量x
继续赋值
x = 'hello python'
print(id(x))
print(x)
此时x又将成为一个新的变量,而且变量类型也由于所赋值的数据类型改变而改变。
此处,id()为Python的内置函数。
如果变量没有赋值,Python将认为该变量不存在。
Python支持多个变量同时赋值。
例如:
a = (1,2,3) #定义一个序列
x,y,z = a #把序列的值分别赋x、y、z
print("a : %d, b: %d, z:%d"%(x,y,z)) #打印结果
a, b, c = 1, 2, "john"
变量作用域
局部变量是只能在函数或者代码块内使用的变量,函数或者代码块一旦结束,局部变量的生命周期也将结束。局部变量的作用范围只有在局部变量被创建的函数内有效。
例如:在文件1中的fun()中定义了一个局部变量,则该局部变量只能被fun()访问,文件1中定义的fun2()不能访问,也不能被文件2访问。
#fileName:file1
def fun():
local_var = 100 #定义一个局部变量
print(local_var)
def fun2():
zero = local_var - 100 #fun2中使用局部变量(不可以)
print("get zero : %d"%zero)
fun()
#fun2()
print("local_var -1 = %d"%(local_var - 1)) #文件1中使用局部变量(不可以)
################################
#Traceback (most recent call last):
# File "E:/python/file1.py", line 10, in <module>
# print("local_var -1 = %d"%(local_var - 1))
#NameError: name 'local_var' is not defined
################################
#Traceback (most recent call last):
# File "E:/python/file1.py", line 9, in <module>
# fun2()
# File "E:/lichenli/python/file1.py", line 6, in fun2
# zero = local_var - 100
#NameError: name 'local_var' is not defined
################################
#fileName:file2
import file1
file1.fun()
print(local_var)
########################
#运行结果
#100
#Traceback (most recent call last):
# File "E:\python\file2.py", line 4, in <module>
# print(local_var)
#NameError: name 'local_var' is not defined
########################
fun()中定义的局部变量就只有fun能够访问。
全局变量是能够被不同函数、类或文件共享的变量,在函数之外定义的变量都叫做全局变量。全局变量可以被文件内任何函数和外部文件访问
#fileName:file1
g_num1 = 1 #定义全局变量
g_num2 = 2 #定义全局变量
def add_num():
global g_num1 #引用全局变量
g_num1 = 3 #修改全局变量的值
result = g_num1 + 1
print("result : %d"%result)
def sub_num():
global g_num2
g_num2 = 5
result = g_num2 - 3
print("result : %d"%result)
add_num()
sub_num()
print("g_num1:%d "%g_num1)
print("g_num2:%d "%g_num2)
#result : 4 result为局部变量
#result : 2
#g_num1:3 全局变量g_num1在执行add_num()函数时被改变
#g_num2:5 全局变量g_num2在执行sub_num()函数时被改变
global保留字用于引用全局变量,如果不适用global关键字,在函数中再为g_num1赋值时将被解释为定义了一个局部变量g_num1。
#添加到sub_num()函数定义之后,add_num()函数调用之前
def other():
result = g_num1 + 2 #直接适用全局变量不改变全局变量的值OK
print("result : %d"%result)
other()
#######################
#result : 3
#result : 4
#result : 2
#g_num1:3
#g_num2:5
#######################
#添加到sub_num()函数定义之后,add_num()函数调用之前
def other():
g_num1 = 10
result = g_num1 + 2
print("result : %d"%result)
other()
####################
#result : 12
#result : 4
#result : 2
#g_num1:3
#g_num2:5
####################
在文件2中访问全局变量。
#fileName:file2
import file1
file1.add_num() #g_num1被改变
test = file1.g_num1 + 1
print("test :%d"%test)
应该尽量避免使用全局变量。不同的模块可以自由的访问全局变量,可能会导致全局变量的不可预知性。
全局变量降低了函数或者模块之间的通用性,不同的函数或模块都要依赖于全局变量。同样,全局变量降低了代码的可读性,阅读者可能不知道调用的某个变量是全局变量。
常量
常量是一旦初始化之后就不能修改的固定值。例如:数字"5",字符串"abc"都是常量。
Python中并没有提供定义常量的保留字。Python是一门功能强大的语言,可以自己定义一个常量类来实现常量的功能。
#fileName:const.py
class _const:
class ConstError(TypeError):pass
def __setattr__(self,name,value):
#if self.__dict__.has_key(name): 3.x之后has_key被废弃
if name in self.__dict__:
raise self.ConstError("Can't rebind const(%s)"%name)
self.__dict__[name] = value
import sys
sys.modules[__name__] = _const()
#fileName:const_2.py
import const
const.name='zhangsan'
const.name='lisi'
##################################
#Traceback (most recent call last):
# File "E:/python/const_2.py", line 4, in <module>
# const.name='lisi'
# File "E:/python\const.py", line 7, in __setattr__
# raise self.ConstError("Can't rebind const(%s)"%name)
#const._const.ConstError: Can't rebind const(name)
##################################
name这个变量已经被赋值"zhangsan"不能继续被赋值,所以抛出异常。raise保留字用于抛出异常。
以上这篇深入理解Python变量与常量就是小编分享给大家的全部内容了,希望能给大家一个参考
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29