京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你应该知道的模型评估的五个方法
好久没更新了,我怕再不更,我要掉粉了,这次来更新的是模型评估的常见的五个方法:
1、混淆矩阵。
2、提升图&洛伦兹图。
3、 基尼系数
4、ks曲线
5、roc曲线。
1
混淆矩阵不能作为评估模型的唯一标准,混淆矩阵是算模型其他指标的基础,后面会讲到,但是对混淆矩阵的理解是必要的。
模型跑出来的“Y”值为每个客户的预测违约概率,可以理解为客户的有多大的可能违约。把概率等分分段,y坐标为该区间的人数,可以得到这样子一个图表。
可以看到图中这条线,一切下去,在左边就算是违约的客户,那么右边就是正常的客户,本身模型没办法百分百的判断客户的状态,所以cd就算是会误判的,d本来是是左边这个小山的客户,那就是坏客户,但是模型预测他的概率比较高别划分到了好客户的这边了,所以d就是被预测为好客户的坏客户,同样的道理,c就是被预测为坏客户的好客户。
2
提升图&洛伦兹图
假设我们现在有个10000的样本,违约率是7%,我们算出这10000的样本每个客户的违约概率之后降序分为每份都是1000的记录,那么在左图中,第一份概率最高的1000个客户中有255个违约的。违约客户占了全部的36.4。如果不对客户评分,按照总体的算,这个分组;理论上有70个人是违约的。
把刚才的图,每组中的随机违约个数以及模型违约个数化成柱形图,可以看到假设现在是p值越大的客户,违约概率越大,那就是说这里第一组的1000个人就是概率倒序排序之后的前1000个人。那么可以看到通过模型,可以识别到第一组的客户违约概率是最高的,那么在业务上运用上可以特别注意这部分客户,可以给予拒绝的处理。
那么洛伦兹图就是将每一组的一个违约客户的个数累计之后连接成一条线,可以看到在12组的时候,违约人数的数量上升是一个比较明显的状态,但是越到后面的组,违约人数上升的越来越少了。那么在衡量一个模型的标准就是这个条曲线是越靠近y轴1的位置越好,那样子就代表着模型能预测的违约客户集中在靠前的几组,所以识别客户的效果就是更好。
3
基尼系数
洛伦茨曲线是把违约概率降序分成10等分,那么基尼统计量的上图是把违约概率升序分成10等分,基尼统计量的定义则为:
G的值在0到1之间,在随机选择下,G取0。G达到0.4以上即可接受。
4
ks值
ks曲线是将每一组的概率的好客户以及坏客户的累计占比连接起来的两条线,ks值是当有一个点,好客户减去坏客户的数量是最大的。那么ks的值的意义在于,我在那个违约概率的点切下去,创造的效益是最高的,就图中这张图来说就是我们大概在第三组的概率的中间的这个概率切下,我可以最大的让好客户进来,会让部分坏客户进来,但是也会有少量的坏客户进来,但是这已经是损失最少了,所以可以接受。那么在建模中是,模型的ks要求是达到0.3以上才是可以接受的。
5
roc
灵敏度可以看到的是判断正确的违约客户数,这里给他个名字为违约客户正确率(tpr),误判率就是判断错误的正常客户数(fpr)。特殊性就是正常客户的正确率,那么roc曲线是用误判率和违约客户数画的一条曲线。这里就需要明确一点就是,我们要的效果是,tpr的越高越好,fpr是越低越好。ROC曲线就是通过在0-1之间改变用于创建混淆矩阵的临界值,绘制分类准确的违约记录比例与分类错误的正常记录比例。具体我们来看图。
我们首先来看A,B点的含义,A点的TPR大概为0.7左右,FPR大概是0.3左右,那么就是说假设我错误的将30%坏客户判断是坏的,那么可以识别70%的客户肯定坏的。B点的TPR大概为0.3左右,FPR大概是0.7左右,那就是我错误的将70%好客户当做坏客户,只能得到30%的客户是确定 坏客户。所以这么说的话,点越靠近左上方,模型就是越好的,对于曲线也是一样的。
总结
我个人建议,要依据不同的业务目的,选取不同的评估方式, 基尼系数、提升图可以用于用人工审批情况的业务目的,不同的分组突出客户的质量的高低,ks、roc可以用于线上审批审核的情况,根据最小损失公式,计算出概率点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27