京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你知道SAS也可以实现神经网络吗
神经网络的理论太长了,我就不写上来了,本次的代码是根据这本书《数据挖掘与应用》--张俊妮中神经网络这一章我做了思路的改动以及在原本代码的基础上,我把它封装好变成一个完整的宏。如果后面你们需要去了解sas神经网络这个proc neural过程也可以去购买这本来读,这本书没有配套的代码,所以代码也是我一个一个照着书敲来之后更改的。
说下这个代码的思路。
1、宏的第一步是采用神经网络建立广义线性模型,没有隐藏层,对数据做第一次的训练。这里的数据宏里面已经自动拆分成测试和训练了,你自己不用拆了。
2、算出神经网络建立广义线性模型的结果算出原始数据(训练集以及测试集)中每一个,客户的违约概率,之后算其ks值。
3、接下来就是循环隐藏层,从1循环到3,当然你要是觉得3层太少,你可以再设置,使用的是早停止(张俊妮的《数据挖掘与应用》的114页种有详细解释这个算法)法建立多层感知模型,那么这里第一次当然循环就是1层啦,那就是1层感知模型。
4、在当隐藏层为一层的时候,我们会拟合两次神经网络,第一次不输出结果,只是产出在隐藏层为一层的时候,挑选出最优的变量权重,拟合一个使用早停止法拟合出来的一个隐藏层为一层的神经网络模型,利用出来的变量规则,算出客户的概率之后算出模型的ks值。
5、到这里并不是要循环隐藏层为两层,还有呢,别着急,这时候隐藏层为一层的前提下,再使用,规则化法建模一层感知器模型,刚才的一层隐藏层使用的早停止法,现在使用的是规则化法,这时候规则化法去的权衰减常数的四种取值(规则化法也可以在书里的115页看到。)四种取值是:0.1 、0.01、0.001、0.0001然后循环之后算出,每个模型的ks记录。
6、所以循环一次隐藏层的层数,是得到4个模型的,早停止法一个,规则化法四个。
7、再一次循环隐藏层的2、3层。最终你可以在ks的汇总跑那个表中,选出训练数据以及测试数据ks都高的模型,作为你最终的模型。
%macromlps(dir,data,list_varname,y_var);
proc datasets lib=work;
delete alltrainfit allvalidfit vaild_ks_total train_ks_total;
run;
data M_CALL_DAY_TOTAL4_t;
set &data.;
indic=_n_;
run;
Proc sort data=M_CALL_DAY_TOTAL4_t; by &y_var.;run;
proc surveyselect data =M_CALL_DAY_TOTAL4_t method = srs rate=0.8
out = traindata;
strata &y_var.;
run;
proc sql;
create table validdata as
select * from
M_CALL_DAY_TOTAL4_t where indic not in (select indic from traindata);
quit;
data traindata;
set traindata;
drop SelectionProb SamplingWeight indic;
run;
data validdata;
set validdata;
drop indic;
run;
proc dmdb data=traindata dmdbcat=dmcdata;
class &y_var.;
var &list_varname.;
run;
proc dmdb data=validdata dmdbcat=dmcdata;
class &y_var.;
var &list_varname.;
run;
data decisionmatrix;
&y_var.=1;
to_1=0;
to_2=1;
output;
&y_var.=0;
to_1=1;
to_2=0;
output;
run;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata ranscale=0.1random=0;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi glim;
nloptions maxiter=300;
train ;
code file="&dir.nncode_germancredit_glim.sas";
score data=traindata nodmdb out=traindata_GLIM outfit=trainfit_GLIM role=TRAIN;
score data=validdata nodmdb out=validdata_GLIM outfit=validfit_GLIM role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_glim.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="glim";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_glim.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="glim";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letnhidden=1;
%do%until(&nhidden.>3);
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
nloptions maxiter=300;
train estiter=1outest=weights_MLP&nhidden._ES outfit=assessment_MLP&&nhidden._ES;
/*code file="&dir.nncode_germancredit_glim.sas";*/
/*score data=traindata nodmdb out=traindata_GLIM outfit=trainfit_GLIM role=TRAIN;*/
/*score data=validdata nodmdb out=validdata_GLIM outfit=validfit_GLIM role=valid;*/
run;
proc sort data=assessment_MLP&&nhidden._ES;
by _VALOSS_;
RUN;
DATA BESTITER;
SET assessment_MLP&&nhidden._ES;
IF _N_=1;
RUN;
proc sql;
select _iter_ into:BESTITER from BESTITER;
quit;
data bestweights;
set weights_MLP&nhidden._ES;
if _type_="PARMS"AND _iter_=&bestiter.;
drop _tech_ _type_ _name_ _decay_ _seed_ _nobj_ _obj_ _objerr_
_averr_ _vnobj_ _vobj_ _vobjerr_ _vaverr_ _p_num_ _iter_;
run;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
initial inest=bestweights;
train tech=none;
code file="&dir.nncode_germancredit_MLP&nhidden._ES.sas";
score data=traindata nodmdb out=traindata_MLP&Nhidden._ES outfit=trainfit_MLP&Nhidden._ES role=TRAIN;
score data=validdata nodmdb out=validdata_MLP&Nhidden._ES outfit=validfit_MLP&Nhidden._ES role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_MLP&nhidden._ES.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="ES";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_MLP&nhidden._ES.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS
p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="ES";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letidecay=1;
%do%until(&idecay.>4);
%if&idecay.=1%then%letcedcay=0.1;
%else%if&idecay.=2%then%letcedcay=0.01;
%else%if&idecay.=3%then%letcedcay=0.001;
%else%if&idecay.=4%then%letcedcay=0.0001;
%put&cedcay.;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
netoptions decay=&cedcay.;
nloptions maxiter=300;
prelim5maxiter=10;
train ;
code file="&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
score data=traindata nodmdb out=traindata_MLP&Nhidden._WD&idecay.outfit=trainfit_MLP&Nhidden._WD&idecay.role=TRAIN;
score data=validdata nodmdb out=validdata__MLP&Nhidden._WD&idecay.outfit=validfit_MLP&Nhidden._WD&idecay.role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="&nhidden._WD&idecay.";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS
p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="&nhidden._WD&idecay.";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letidecay=%eval(&idecay.+1);
%end;
%letnhidden=%eval(&nhidden.+1);
%end;
%mend;
/*%mlps();*/
%letlist_varname=%str(N_M5_T09_CONRT N_M6_T09_CINRT N_N5_T82_COC_RC N_M5_T03_CONRT N_M3_T10_CONRC N_M3_T83_COC_RC
N_M3_T09_CINRTN_M6_T83_COT_RC N_M3_T83_CIT_RC N_M2_T10_CONRC N_M5_T03_CINRM N_M5_T10_CONRC N_M4_T02_CONRC N_M1_T08_CONRM
N_M3_T06_CINRM N_M2_T09_CONRT N_M6_T03_CONRT N_M5_T07_CINR );
%mlps(dir=F:data_1,data=raw.CALL_HOUR2_total7_woe,list_varname=&list_varname.,y_var=y);
最终的宏里面的list_vaname就不用填了,让他引用上面的宏list_vaname就可以了,list_vaname填的是你要去建立神经网络的变量,这里提醒一句哈,就是我尝试了不分组,分20组,分10组,分5组的效果,我建议是将变量分组好之后再丢进去比较好,但是我说不准到底是几组好,毕竟我和你的数据不一样。
data填的原始数据集。dir,填一个路径,这个路径存放的是最终的模型输出的规则,跟决策树那个score一个道理的。y_var填的是你的因变量。
最后看下你们最终要看的结果图长什么样子:
主要是要看这两个数据集的,这两个数据集长这样子:
ks值每个模型的ks值,p值是ks的p值,model对应的是哪个模型,GLIM是哪个广义线性模型,1_WD1代表的是隐藏层为1,权衰减为0.1对应的模型,在1_WD1,代表的隐藏层为1的时候对应的早停止发的模型,在2_WD1,代表的隐藏层为2的时候对应的早停止发的模型,找出你喜欢模型之后,去路径下面找规则代码就可以了。如果实在是这个代码格式跟你的sas不符的,可以在后台跟我要下txt的格式的代码。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03