
基于python二维数组及画图的实例详解
下面小编就为大家分享一篇基于python 二维数组及画图的实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
1、二维数组取值
注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型
#二维数组
import numpy as np
list1=[[1.73,1.68,1.71,1.89,1.78],
[54.4,59.2,63.6,88.4,68.7]]
list3=[1.73,1.68,1.71,1.89,1.78]
list4=[54.4,59.2,63.6,88.4,68.7]
list5=np.array([1.73,1.68,1.71,1.89,1.78])
list6=np.array([54.4,59.2,63.6,88.4,68.7])
#构造二维数组
list=np.array([[1.73,1.68,1.71,1.89,1.78],
[54.4,59.2,63.6,88.4,68.7]])
print type(list1)
#两个list直接相运算是会报错的,如果想得到list3中的每个数据除以list4中相对应的数据值,则要引入nump中的array函数
# print list3/list4
#下面的可以实现list5/list6
print list5/list6
print type(list) #结果:<type 'numpy.ndarray'>
print list.shape #结果:(2, 5) 二行5列二维数组
print list[0][2] #结果:1.71 ,取第0行第二列数值,即第三列1.71
print list[0,2] #结果:1.71 ,取第0行第二列数值,即第三列1.71
print list[:,1:3] #结果:[[ 1.68 1.71] [ 59.2 63.6 ]],取所有行的,第一列和第三列数据
print list[1,:] #结果:[ 54.4 59.2 63.6 88.4 68.7],取第一行的所有数值
2、 画图
(1)线图
import matplotlib.pyplot as plt
year=[1950,1970,1990,2010]
pop=[2.518,3.68,5.23,6.97]
# 1.线图
#调用plt。plot来画图,横轴纵轴两个参数即可
plt.plot(year,pop)
# python要用show展现出来图
plt.show()
(2)散点图
import matplotlib.pyplot as plt
year=[1950,1970,1990,2010]
pop=[2.518,3.68,5.23,6.97]
#2.散点图,只是用用scat函数来调用即可
plt.scatter(year,pop)
plt.show()
(3)直方图
import matplotlib.pyplot as plt
#3.直方图
# 用hist(x,bins=10)函数来画,参数中x是个List,构建直方图的数集,bins是算出数据的边界及每个bin中有多少个数据点
values=[0,0.6,1.4,1.6,2.2,2.5,2.6,3.2,3.5,3.9,4.2,6]
#有12个数据,bins=3将其分为3段,即(0,2),(2,4),(4,6),从直方图中可以看出(2,4)中的数据最多
plt.hist(values,bins=3)
plt.show()
以上这篇基于python 二维数组及画图的实例详解就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01