京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS如何进行T检验详细教程
spss实验生活中我们经常的使用,基本是每个实验都会用到这个的,当然也可能是其他统计软件,但是这个spss也是比较常用的,spss里面T检验是比较常见的,另外方差也是比较常见的,而t检验主要是比较两组数据之间的差别,比较之前还是有一些要求的,我们统计一些数据,虽说可以用手动计算来得出结论,但是一旦数据量特别大的时候,人工计算将会特别的繁琐而且经常可能出现计算失误的情况,所以spss可以说在统计学甚至其他方面有着不可缺少的作用,下面小编会给大家讲解一下t检验的几个详细教程,希望对大家有所帮助。
单样本T检验
单样本T检验,我们要做的其实主要就是求数据的置信区间以及数据是否有显著性差异,而我们生物医学上面基本都是要求95%的置信区间的,当然有一些特殊情况下面,这个区间也是会变的,首先,我们先导入数据样本,小编会以“身高”为例,求取身高的这个区间以及确定它是否有显著性差异。
导入数据样本之后,执行“分析-比较均值-单样本T检验(s)”,这个时候我们会看见一个弹出窗口,我们讲“升高(SG)”作为变量,进行设定,同时点击“选项”将置信百分比设置为95%,点击继续-确定。
确定之后,系统会分析出结果,我们会发现升高p(sig)<0.05,这个就说明这组数据不是正态分布,是存在显著性差异的,而这组数据的置信区间就是(141,144)【就是(下限,上限),如图】
配对样本T检验
这个数据我们一般都是比较同组数据前后的数据差异,当然还有其他情况,但是总是这两组样本都不是相互独立的,而且是必须服从正态分布的,这样才能进行分析,首先,我们先导入样本数据【例子不是前后对照】。
导入数据之后,我们执行“分析-比较均值-配对样本T检验(P)”,这个时候弹出一个窗口,我们讲前后样本分布移动至如图的位置,同时点击“选项”选着95%的置信百分比。点击继续-确定。
确定之后,系统分析数据,第一个表的p(sig)>0.05,说明两组直接无相关关系,而第二个表间p<0.05,说明其两组数据之间有显著性差异。【具体分析都得以得出的数据为参考哦】
独立样本T检验
独立样本T检验可以说是需要的要求比较多的,首先我们的数据是得服从正态分布的,首先,导入样本数据,我们可以看到样本中的两组数据“性别和工资”。
但是我们会发现,性别是数字标记的,很多人可能会对其不习惯,我们可以设置转换一下,首先点击“性别”进入“变量视图”,我们点击“值”将“1设置为男”“2设置为女”【这个性别都是有具体数据的不能乱设定哦】,设置好之后确定,点击转换,数字就变成男女文字了【转换按钮在图片上面有标记】
基础数据处理好之后,执行“分析-比较均值-独立样本T检验(T)”,弹出窗口,将”工资“设定为检验变量,”性别“设为分组变量,同时点击定义组,设置组1,组2【组1就是男的数据组,组2就是女的数据组】,点击继续-确定。
确定之后,我们就得出数据,而我们的独立样本必须服从方差齐性,如果方差不齐性,那么就得用T"检验,所以,我们开始分析这组数据,第二个表上面P(sig)<0.05,说明他的方差不相等,这个就说明我们得选用T"检验,所以,我们得选第二行的数据值。
当然啦,如果第二个表上面P(sig)>0.05,说明他的方差相等,这个就说明我们得选用T检验,那么,我们就得选着第二个表的第一行的数据值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16