京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中使用ElementTree解析XML示例
这篇文章主要介绍了Python中使用ElementTree解析XML示例,本文同时讲解了XML基本概念介绍、XML几种解析方法和ElementTree解析实例,需要的朋友可以参考下

【XML基本概念介绍】
XML 指可扩展标记语言(eXtensible Markup Language)。
XML 被设计用来传输和存储数据。
概念一:
概念二:
概念三:
概念四:
概念五:
概念六:
【XML几种解析方法】
常见的XML编程接口有DOM和SAX,这两种接口处理XML文件的方式不同,使用场合自然也就不同。
Python有三种方法解析XML: SAX,DOM,以及ElementTree:
1.SAX (Simple API for XML )
Pyhton标准库包含SAX解析器,SAX用事件驱动模型,通过在解析XML的过程中触发一个个的事件并调用用户定义的回调函数来处理XML文件。SAX是一种基于事件驱动的API。利用SAX解析XML文档牵涉到两个部分:解析器和事件处理器。
解析器负责读取XML文档,并向事件处理器发送事件,如元素开始及结束事件;而事件处理器则负责对事件作出处理。
优点:SAX流式读取XML文件,比较快,占用内存少。
缺点:需要用户实现回调函数(handler)。
2.DOM(Document Object Model)
将XML数据在内存中解析成一个树,通过对树的操作来操作XML。一个DOM的解析器在解析一个XML文档时,一次性读取整个文档,把文档中所有元素保存在内存中的一个树结构里,之后你可以利用DOM提供的不同的函数来读取或修改文档的内容和结构,也可以把修改过的内容写入xml文件。
优点:使用DOM的好处是你不需要对状态进行追踪,因为每一个节点都知道谁是它的父节点,谁是子节点.
缺点:DOM需要将XML数据映射到内存中的树,一是比较慢,二是比较耗内存,使用起来也比较麻烦!
3.ElementTree(元素树)
ElementTree就像一个轻量级的DOM,具有方便友好的API。代码可用性好,速度快,消耗内存少。
相比而言,第三种方法,即方便,又快速,我们一直用它!下面介绍用元素树如何解析XML:
【ElementTree解析】
两种实现
ElementTree生来就是为了处理XML ,它在Python标准库中有两种实现。
一种是纯Python实现,例如: xml.etree.ElementTree
另外一种是速度快一点的: xml.etree.cElementTree
尽量使用C语言实现的那种,因为它速度更快,而且消耗的内存更少! 在程序中可以这样写:
常用方法
示例XML
###########
## 加载XML
###########
方法一:加载文件
方法二:加载字符串
###########
##获取节点
###########
方法一:获得指定节点->getiterator()方法
方法二:获得指定节点->findall()方法
方法三:获得指定节点->find()方法
方法四:获得儿子节点->getchildren()
###########
## 例子01
###########
输出结果:
==============================
head=> bookone
name=> python check
number=> 001
page=> 200
==============================
head=> booktwo
name=> python learn
number=> 002
page=> 300
==============================
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27