京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,你的网络能够“胜任”吗
大数据可以带来很大的优势,但是你的网络能够“胜任”吗?下面让我们来看看网络面临的一些挑战和注意事项。
想象这样一个情况,在第一集播出之前,广播网络就能够准确地预测电视连续剧的播出情况。我们可以通过工具来分析家电中的传感器的数据,来帮助居民降低功耗,或者利用工具通过实时追踪数据包来优化传播路线和流量消耗。
听起来太超前?其实,我们已经差不多实现了。
移动应用程序、全IP无线网络、在线商务、销售点系统、社交媒体以及传感器的崛起产生了大量数据,如果我们能够正确地分析这些数据,我们将能够挖掘出关键情报来促使业务决策。大部分这些数据是在“空中”收集的,如果迅速采取行动,这可以为企业提供独特的竞争优势,以及解决问题。
但这些数据量非常巨大,并且速度正在不断提升,这也对网络提出了更高的要求。网络需要负责处理数据,在大数据勉强,网络管理员和首席信息官面临着全新的挑战。
大数据正在不断变化,数据量已经超越了TB级到PB级,数据关系已经从简单和已知的发展为复杂和未知的;数据模型已经从固定模式类型转变为不固定模式;数据来源已经从简单的数据录入转变为各种来源,包括手持式设备和机器传感器。大数据包含各种各样的形式,例如,通话录音与信用卡交易信息有所不同。与传统应用程序中的结构化数据不同的是,大数据包含半结构化或非结构化数据,例如文本、音频、视频、点击流、日志文件,以及测量和传输地理及环境信息的传感器的输出数据。
大数据环境改变了数据在网络中流动的方式,大数据产生了更多的东-西或者服务器到服务器流量,而不是南-北或服务器到客户端流量,对于每个客户端互动,可能会有数百或者数千服务器和数据节点交互。应用程序架构已经从集中式模式转变为分布式模式。这与过去20年构建的传统的客户端/服务器网络架构相反。
从各种来源收集数据,大数据系统在服务器集群中运行,这些服务器集群分布在多个网络节点。这些集群以平行向外的模式运行任务。流量模式的运行范围从1到1(电话)、1到多(电视节目)、多到1(音乐会观众)、以及多到多(对讲机),这结合了并行运行的多个节点之间的单播和组播流量。网络管理员需要应对这种综合的流量模式,其中一些流量创建了单独的流,其中一些则创建了多个流。
此外,当数据提供到计算节点时,会产生大量网络流量。分布式节点之间的数据整理操作需要快速和可预测的数据传输。分析系统使用直接附加存储来处理,中间存储来清理数据。
数据需要在网络中四处移动,并在分析过程中有效地操作。随着新数据集的增加,以及来源的增加,工作负载也在增加,这意味着迅速增加容量的需求也在提升。因此,关键是优化网络架构中的本地性、高性能、横向扩展和直接服务节点到服务节点的连接。
其中一个设计模型涉及构建低端商品硬件,以及让分析软件对网络问题作出反应,例如重新启动因为拥塞而超时的任务。这种模式被用于非实时处理,其中完成时间并不是关键,同时,数据主要来自一个来源。
另一种模式则涉及建立基于硬件的系统,该系统能够提供确定性的性能来确保持续的处理。这种模型被用于对来自多个来源的数据的近实时分析。
网络节点在任意到任意的模型中相互连接,它们之间具有单跳,为处理多个大量数据流提供专用处理系统,具有低损耗和确定性性能,这能够有利于实时大数据系统,
交换机架构提供了整个系统带宽和性能的优势,尤其是减少延迟性。位置独立性允许集群和数据从架构中的任何位置实现最佳性能。这种架构还能实现新数据来源到集群的无缝融合,而不需要重新布线,并显著地简化了系统的扩展。这种架构提供的融合,让服务器集群以及存储区域网络跨网络通信。所有资源作为一个实体来管理,政策也可以很容易地部署到整个交换基础设施。
大数据给企业捕捉和分析数据带来了巨大的机会。随着IT企业开始测试和构建自己的解决方案,网络管理员必须考虑这些技术对其服务器、存储、网络和运营基础设施的影响。企业如何能够最好地开发新的基础设施来利用和分析不断增加的大数据流量呢?在开发网络拓扑时,请务必考虑以下问题:
回答这些问题可以帮助你构建更适合大数据的网络,它们将会指示你的基础设施将如何影响数据中心架构以及互连要求。
大数据需要企业制定新的战略,来提供实时业务分析和新的业务洞察力。随着数据的快速变化,企业有必要考虑这些关键技术来满足明天的业务需求,满足最高水平的投资保护、业务敏捷性,并缩短进入市场的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22