
剖析手写数字识别器LeNet-5认识卷积网络
关于卷积神经网络(CNN)的文章网上非常多,也有很多大牛们讲得生动形象,令人十分佩服,也给我的学习带来了很大的帮助,但是关于LeNet-5的具体剖析感觉还没有一篇博文讲得很清楚,本着菜鸟服务菜鸟的精神,写一个通过详细介绍LeNet-5手写识别器的过程来认识卷积网络。
CNN的核心思想无非三种:
1、局部感受野:每个神经元感受局部图像区域;
2、权值共享:同一个滤波器下,每个神经元权值参数是一样的;
3、时间或空间亚采样:模糊图像,带来更好的泛化性能。
其实理解CNN的方法有很多种,比如一个Map是28*28,让它去卷积上一层的Map,怎么看呢?可以看作是28*28个神经元走一次(因为“局部感受野”和“权值共享”嘛)。所以,可以把一个Map叫做一个滤波器,也可以把一个神经元叫做滤波器。
下面介绍这次博文的主题,典型的用来识别数字的卷积网络LeNet-5。当年美国大多数银行就是用它来识别支票上面的手写数字的。能够达到这种商用的地步,它的准确性可想而知。上图。
由图知输入的图像是32*32格式的。
第一步,C1层,也就是卷积层的第一层。一共有6个Map,每个Map分辨率是28*28,每个神经元的分辨率则是(32-28+1)*(32-28+1)=5*5,我们可以把这个神经元看作一个滤波器,而这就是局部感受野,因为一个滤波器只感受5*5的风景。又因为权值共享,同Map下所有的神经元感受的特征都是一样的,所以这整个Map都只能算一个滤波器。每个Map算一个滤波器,每个滤波器有(5*5+1)个参数,28*28个神经元是重复被6个滤波器使用的,每个神经元一共有(5*5+1)*6=156个参数,这里要注意一点,这里是6个滤波器卷一个Map,所以有6个偏置。假如6个滤波器卷两个Map呢?还是只有6个偏置,因为被卷的Map不论数量只算一个偏置。一共有156*(28*28)=122304个连接。
第二步,S2层,下采样层,模糊图像,提高泛化性。6个Map,每个Map14*14,size=2*2,卷积层有重叠,而采样层无重叠,所以每个Map=上一层Map分辨率28*28/size 2*2=14*14。采样层参数计算方法和卷积层也不一样,每个滤波器有可训练参数和可训练偏置两个参数,所以一共有2*6=12个参数。而采样层又是特殊的卷积层,只不过是卷积核为2*2(pool size),所以连接数计算方法不变,一共有(2*2+1)*14*14*6=5880个连接。
第三部,C3层,卷积层。16个Map,每个Map有10*10个神经元,每个神经元分辨率为(14-10+1)*(14-10+1)=5*5,前6个Map卷S2中3个相邻Map,接下来6个Map卷S2中4个相邻Map,接下来3个卷S2中4个不相邻Map,最后一个卷S2中所有Map。一共有6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(6*5*5+1)=1516个参数,一共有1516*10*10=151600个连接。
第四层,S4层,下采样层,16个Map,每个Map有5*5个神经元,pool size=2*2。有32个参数,有(2*2+1)*5*5*16=2000个连接。
第五层,C5层,卷积层。有120个Map,每个神经元与S4的16个Map的5*5相连,所以C5的Map为(5-5+1)*(5-5+1)=1*1个神经元。一共有120*(16*5*5+1)=48120个参数,有1*1*48120个连接。
第六层,F6层,全连接层,84个Map,一共有84*121=10164个参数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18