
剖析手写数字识别器LeNet-5认识卷积网络
关于卷积神经网络(CNN)的文章网上非常多,也有很多大牛们讲得生动形象,令人十分佩服,也给我的学习带来了很大的帮助,但是关于LeNet-5的具体剖析感觉还没有一篇博文讲得很清楚,本着菜鸟服务菜鸟的精神,写一个通过详细介绍LeNet-5手写识别器的过程来认识卷积网络。
CNN的核心思想无非三种:
1、局部感受野:每个神经元感受局部图像区域;
2、权值共享:同一个滤波器下,每个神经元权值参数是一样的;
3、时间或空间亚采样:模糊图像,带来更好的泛化性能。
其实理解CNN的方法有很多种,比如一个Map是28*28,让它去卷积上一层的Map,怎么看呢?可以看作是28*28个神经元走一次(因为“局部感受野”和“权值共享”嘛)。所以,可以把一个Map叫做一个滤波器,也可以把一个神经元叫做滤波器。
下面介绍这次博文的主题,典型的用来识别数字的卷积网络LeNet-5。当年美国大多数银行就是用它来识别支票上面的手写数字的。能够达到这种商用的地步,它的准确性可想而知。上图。
由图知输入的图像是32*32格式的。
第一步,C1层,也就是卷积层的第一层。一共有6个Map,每个Map分辨率是28*28,每个神经元的分辨率则是(32-28+1)*(32-28+1)=5*5,我们可以把这个神经元看作一个滤波器,而这就是局部感受野,因为一个滤波器只感受5*5的风景。又因为权值共享,同Map下所有的神经元感受的特征都是一样的,所以这整个Map都只能算一个滤波器。每个Map算一个滤波器,每个滤波器有(5*5+1)个参数,28*28个神经元是重复被6个滤波器使用的,每个神经元一共有(5*5+1)*6=156个参数,这里要注意一点,这里是6个滤波器卷一个Map,所以有6个偏置。假如6个滤波器卷两个Map呢?还是只有6个偏置,因为被卷的Map不论数量只算一个偏置。一共有156*(28*28)=122304个连接。
第二步,S2层,下采样层,模糊图像,提高泛化性。6个Map,每个Map14*14,size=2*2,卷积层有重叠,而采样层无重叠,所以每个Map=上一层Map分辨率28*28/size 2*2=14*14。采样层参数计算方法和卷积层也不一样,每个滤波器有可训练参数和可训练偏置两个参数,所以一共有2*6=12个参数。而采样层又是特殊的卷积层,只不过是卷积核为2*2(pool size),所以连接数计算方法不变,一共有(2*2+1)*14*14*6=5880个连接。
第三部,C3层,卷积层。16个Map,每个Map有10*10个神经元,每个神经元分辨率为(14-10+1)*(14-10+1)=5*5,前6个Map卷S2中3个相邻Map,接下来6个Map卷S2中4个相邻Map,接下来3个卷S2中4个不相邻Map,最后一个卷S2中所有Map。一共有6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(6*5*5+1)=1516个参数,一共有1516*10*10=151600个连接。
第四层,S4层,下采样层,16个Map,每个Map有5*5个神经元,pool size=2*2。有32个参数,有(2*2+1)*5*5*16=2000个连接。
第五层,C5层,卷积层。有120个Map,每个神经元与S4的16个Map的5*5相连,所以C5的Map为(5-5+1)*(5-5+1)=1*1个神经元。一共有120*(16*5*5+1)=48120个参数,有1*1*48120个连接。
第六层,F6层,全连接层,84个Map,一共有84*121=10164个参数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15