数据分析岗位专业背景要求的不确定性 随着大数据和人工智能技术的快速发展,数据分析师的需求日益增长。然而,关于适合从事数据分析工作的特定专业背景的讨论仍然存在不确定性。这是因为数据分析领域涉及多 ...
2023-05-11随着数字化时代的到来,数据分析师成为了各行各业中不可或缺的角色。作为一名数据分析师,如何做好工作呢?以下是几个必备的要素。 1. 掌握各种数据分析工具。 掌握各种数据分析工具。数据分析师要精通SQL、 ...
2023-04-25CDA Level Ⅰ:随报随考,120分钟,80道单选题,每题0.5分,20道知识相关多选题+40道内容材料单选题,每题1分,线下上机答题,满分100分,60分以上通过。低于60,成绩D,60+,成绩C,75+,成绩B,85+,成绩A。证书不 ...
2023-04-07CDA Level Ⅰ: 随报随考,120分钟,客观选择题(单选+多选+内容相关+案例分析),线下上机答题。考点请参考CDA Level Ⅰ考试大纲。 CDA Level II: 随报随考,150分钟,客观选择题 ...
2023-04-07CDA Level Ⅰ: 随报随考,120分钟,客观选择题(单选+多选+内容相关+案例分析),线下上机答题。考点请参考CDA Level Ⅰ考试大纲。 CDA Level II: 随报随考,150分钟,客观选择题 ...
2023-04-07CDA Level Ⅰ: 随报随考,120分钟,客观选择题(单选+多选+内容相关+案例分析),线下上机答题。考点请参考CDA Level Ⅰ考试大纲。 CDA Level II: 随报随考,150分钟,客观选择题 ...
2023-04-07CDA LevelⅠ: 随报随考,120分钟,客观选择题(单选+多选+内容相关+案例分析),线下上机答题。考点请参考CDA LevelⅠ考试大纲。 CDA Level II: 随报随考,150分钟,客观选择题(单选+多 ...
2023-04-07数据分析师的职业是指在数字经济和人工智能时代,利用数据分析的方法和技术,为各行各业提供数据驱动的决策支持和价值创造的专业人才。 数据分析师的职业理解主要包括以下几个方面: 职业定 ...
2023-04-07大数据分析师是指能够利用大数据技术和工具,从海量、复杂、多样的数据中提取有价值的信息,为企业或组织提供数据支持和决策建议的专业人才。大数据分析师怎么理解,可以参考以下几个方面: ...
2023-04-07数据分析师业务理解是指数据分析师能够从业务的角度,了解数据的来源、质量、影响因素、价值和应用场景,能够根据业务需求设计合理的数据分析方案和指标体系,能够通过数据分析帮助业务部门解决 ...
2023-04-07数据分析师是一个在数字经济和人工智能时代越来越重要的职业,它是指利用数据分析的方法和技术,从海量的数据中提取有价值的信息,为企业和社会的决策和发展提供支持的专业人才。 数据分析师的工作 ...
2023-04-07数据分析师是指在不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。数据分析师的工作内容和能力要求可能因行业和岗位而异,但一般来说,需要掌握以下几方面 ...
2023-04-07大数据分析师,顾名思义,就是利用大数据技术和方法来进行数据分析的专业人士。大数据分析师的工作,可以从以下几个方面来理解: 大数据分析师的目标:大数据分析师的目标是利用海量、多样、快速变 ...
2023-04-07数据分析师的工作,简单来说,就是利用数据来帮助企业或组织解决问题、优化决策、提升效率的工作。具体来说,可以分为以下几个步骤: 明确分析目的:这是数据分析的第一步,也是最重要的一步,需要 ...
2023-04-07数据分析师,就是利用数据来帮助企业或组织解决问题、优化决策、提升效率的专业人士。数据分析师的工作,可以从以下几个方面来理解: 数据分析师的目标:数据分析师的目标是根据业务部门或客户的需求和 ...
2023-04-07数据分析师需要理解的内容主要有以下几个方面: 数据分析的目的和价值:数据分析师需要明确自己的工作是为了什么,数据分析能够为企业和社会带来什么样的价值,如何通过数据分析实现目标或解决问题 ...
2023-04-07CDA Level Ⅰ: 随报随考,120分钟,客观选择题(单选+多选+内容相关+案例分析),线下上机答题。考点请参考CDA Level Ⅰ考试大纲。 CDA Level II: 随报随考,150分钟,客观选择题 ...
2023-04-07数据分析师是一种利用数据来帮助企业或组织解决问题、优化决策、提升效率的职业,需要具备以下几方面的要求: 数据分析能力:这是数据分析师的核心技能,需要掌握数据的收集、清洗、处理、分析、可视化 ...
2023-04-07CDA Level Ⅰ: 随报随考,120分钟,客观选择题(单选+多选+内容相关+案例分析),线下上机答题。考点请参考CDA Level Ⅰ考试大纲。 CDA Level II: 随报随考,150分钟,客观选择题 ...
2023-04-07数据分析师是一个非常有前途的职业,它需要具备数据收集、处理、分析、可视化和报告的能力,以及对业务场景和问题的理解和解决。文科生想要成为数据分析师,可能会面临一些挑战,比如缺乏数学和统计学的基础, ...
2023-04-07机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01