京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Python程序中操作MySQL的基本方法
最近在学习python,这种脚本语言毫无疑问的会跟数据库产生关联,因此这里介绍一下如何使用python操作mysql数据库。我python也是零基础学起,所以本篇博客针对的是python初学者,大牛可以选择绕道。
另外,本篇基于的环境是Ubuntu13.10,使用的python版本是2.7.5。
MYSQL数据库
MYSQL是一个全球领先的开源数据库管理系统。它是一个支持多用户、多线程的数据库管理系统,与Apache、PHP、Linux共同组成LAMP平台,在web应用中广泛使用,例如Wikipedia和YouTube。MYSQL包含两个版本:服务器系统和嵌入式系统。
环境配置
在我们开始语法学习之前,还需要按装mysql和python对mysql操作的模块。
安装mysql:
sudo apt-get install mysql-server
安装过程中会提示你输入root帐号的密码,符合密码规范即可。
接下来,需要安装python对mysql的操作模块:
sudo apt-get install python-mysqldb
这里需要注意:安装完python-mysqldb之后,我们默认安装了两个python操作模块,分别是支持C语言API的_mysql和支持Python API的MYSQLdb。稍后会重点讲解MYSQLdb模块的使用。
接下来,我们进入MYSQL,创建一个测试数据库叫testdb。创建命令为:
create database testdb;
然后,我们创建一个测试账户来操作这个testdb数据库,创建和授权命令如下:
create user 'testuser'@'127.0.0.1' identified by 'test123';
grant all privileges on testdb.* to 'testuser'@'127.0.0.1';
_mysql module
_mysql模块直接封装了MYSQL的C语言API函数,它与python标准的数据库API接口是不兼容的。我更推荐大家使用面向对象的MYSQLdb模块才操作mysql,这里只给出一个使用_mysql模块的例子,这个模块不是我们学习的重点,我们只需要了解有这个模块就好了。
#!/usr/bin/python
# -*- coding: utf-8 -*-
import _mysql
import sys
try:
con = _mysql.connect('127.0.0.1', 'testuser', 'test123', 'testdb')
con.query("SELECT VERSION()")
result = con.use_result()
print "MYSQL version : %s " % result.fetch_row()[0]
except _mysql.Error, e:
print "Error %d: %s %s" % (e.args[0], e.args[1])
sys.exit(1)
finally:
if con:
con.close()
这个代码主要是获取当前mysql的版本,大家可以模拟敲一下这部分代码然后运行一下。
MYSQLdb module
MYSQLdb是在_mysql模块的基础上进一步进行封装,并且与python标准数据库API接口兼容,这使得代码更容易被移植。Python更推荐使用这个MYSQLdb模块来进行MYSQL操作。
#!/usr/bin/python
# -*- coding: utf-8 -*-
import MySQLdb as mysql
try:
conn = mysql.connect('127.0.0.1', 'testuser', 'test123', 'testdb')
cur = conn.cursor()
cur.execute("SELECT VERSION()")
version = cur.fetchone()
print "Database version : %s" % version
except mysql.Error, e:
print "Error %d:%s" % (e.args[0], e.args[1])
exit(1)
finally:
if conn:
conn.close()
我们导入了MySQLdb模块并把它重命名为mysql,然后调用MySQLdb模块的提供的API方法来操作数据库。同样也是获取当前主机的安装的mysql版本号。
创建新表
接下来,我们通过MySQLdb模块创建一个表,并在其中填充部分数据。实现代码如下:
#!/usr/bin/python
# -*- coding: utf-8 -*-
import MySQLdb as mysql
conn = mysql.connect('127.0.0.1', 'testuser', 'test123', 'testdb');
with conn:
cur = conn.cursor()
cur.execute("DROP TABLE IF EXISTS writers");
cur.execute("CREATE TABLE writers(id INT PRIMARY KEY AUTO_INCREMENT, name varchar(25))")
cur.execute("insert into writers(name) values('wangzhengyi')")
cur.execute("insert into writers(name) values('bululu')")
cur.execute("insert into writers(name) values('chenshan')")
这里使用了with语句。with语句会执行conn对象的enter()和__exit()方法,省去了自己写try/catch/finally了。
执行完成后,我们可以通过mysql-client客户端查看是否插入成功,查询语句:
select * from writers;
查询结果如下:
查询数据
刚才往表里插入了部分数据,接下来,我们从表中取出插入的数据,代码如下:
#!/usr/bin/python
import MySQLdb as mysql
conn = mysql.connect('127.0.0.1', 'testuser', 'test123', 'testdb');
with conn:
cursor = conn.cursor()
cursor.execute("select * from writers")
rows = cursor.fetchall()
for row in rows:
print row
查询结果如下:
(1L, 'wangzhengyi')
(2L, 'bululu')
(3L, 'chenshan')
dictionary cursor
我们刚才不论是创建数据库还是查询数据库,都用到了cursor。在MySQLdb模块有许多种cursor类型,默认的cursor是以元组的元组形式返回数据的。当我们使用dictionary cursor时,数据是以python字典形式返回的。这样我们就可以通过列名获取查询数据了。
还是刚才查询数据的代码,改为dictionary cursor只需要修改一行代码即可,如下所示:
#!/usr/bin/python
import MySQLdb as mysql
conn = mysql.connect('127.0.0.1', 'testuser', 'test123', 'testdb');
with conn:
cursor = conn.cursor(mysql.cursors.DictCursor)
cursor.execute("select * from writers")
rows = cursor.fetchall()
for row in rows:
print "id is %s, name is %s" % (row['id'], row['name'])
使用dictionary cursor,查询结果如下:
id is 1, name is wangzhengyi
id is 2, name is bululu
id is 3, name is chenshan
预编译
之前写过php的同学应该对预编译很了解,预编译可以帮助我们防止sql注入等web攻击还能帮助提高性能。当然,python肯定也是支持预编译的。预编译的实现也比较简单,就是用%等占位符来替换真正的变量。例如查询id为3的用户的信息,使用预编译的代码如下:
#!/usr/bin/python
import MySQLdb as mysql
conn = mysql.connect('127.0.0.1', 'testuser', 'test123', 'testdb');
with conn:
cursor = conn.cursor(mysql.cursors.DictCursor)
cursor.execute("select * from writers where id = %s", "3")
rows = cursor.fetchone()
print "id is %d, name is %s" % (rows['id'], rows['name'])
我这里使用了一个%s的占位符来替换“3”,代表需要传入的是一个字符串类型。如果传入的不是string类型,则会运行报错。
事务
事务是指在一个或者多个数据库中对数据的原子操作。在一个事务中,所有的SQL语句的影响要不就全部提交到数据库,要不就全部都回滚。
对于支持事务机制的数据库,python接口在创建cursor的时候就开始了一个事务。可以通过cursor对象的commit()方法来提交所有的改动,也可以使用cursor对象的rollback方法来回滚所有的改动。
我这里写一个代码,对不存在的表进行插入操作,当抛出异常的时候,调用rollback进行回滚,实现代码如下:
#!/usr/bin/python
# -*- coding: utf-8 -*-
import MySQLdb as mysql
try:
conn = mysql.connect('127.0.0.1', 'testuser', 'test123', 'testdb');
cur = conn.cursor()
cur.execute("insert into writers(name) values('wangzhengyi4')")
cur.execute("insert into writers(name) values('bululu5')")
cur.execute("insert into writerss(name) values('chenshan6')")
conn.commit()
except mysql.Error, e:
if conn:
conn.rollback()
print "Error happens, rollback is call"
finally:
if conn:
conn.close()
执行结果如下:
Error happens, rollback is call
因为前两条数据是正确的插入操作,但是因为整体回滚,所以数据库里也没有wangzhengyi4和bululu5这两个数据的存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01