京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言vs Python:硬碰硬的数据分析
我们将在已有的数十篇从主观角度对比Python和R的文章中加入自己的观点,但是这篇文章旨在更客观地看待这两门语言。我们会平行使用Python和R分析一个数据集,展示两种语言在实现相同结果时需要使用什么样的代码。这让我们了解每种语言的优缺点,而不是猜想。
我们将会分析一个NBA数据集,包含运动员和他们在2013-2014赛季的表现,可以在这里下载这个数据集。我们展示Python和R的代码,同时做出一些解释和讨论。事不宜迟,现在就开始这场硬碰硬的对决吧!
读取CSV文件
R
nba <- read.csv("nba_2013.csv")
Python
import pandas
nba = pandas.read_csv("nba_2013.csv")
上面的代码分别在两种语言中将包含2013-2014赛季NBA球员的数据的 nba_2013.csv
文件加载为变量nba。Python中实际的唯一不同是需要加载pandas库以使用Dataframe。Dataframe在R和Python中都可用,它是一个二维数组(矩阵),其中每列都可以是不同的数据类型。在完成这一步后,csv文件在两种语言中都加载为dataframe。
统计球员数量
R
print(dim(nba))
[1] 481 31
Python
print(nba.shape)
(481, 31)
两者分别输出球员数量和数据列数量。我们有481行,或者说球员,和31列关于球员的数据。
查看数据的第一行
R
print(head(nba, 1))
player pos age bref_team_id
1 Quincy Acy SF 23 TOT
[output truncated]
Python
print(nba.head(1))
player pos age bref_team_id
0 Quincy Acy SF 23 TOT
[output truncated]
它们几乎完全相同。两种语言都打印出数据的第一行,语法也非常类似。Python在这里更面向对象一些,head是dataframe对象的一个方法,而R具有一个单独的head函数。当开始使用这些语言做分析时,这是一个共同的主题,可以看到Python更加面向对象而R更函数化。
计算每个指标的均值
让我们为每个指标计算均值。如你所见,数据列以类似fg(field goals made)和ast(assists)的名称命名。它们都是球员的赛季统计指标。如果想得到指标的完整说明,参阅这里。
R
meanNoNA <- function(values){
mean(values, na.rm=TRUE)
}
sapply(nba, meanNoNA)
player NA
pos NAage 26.5093555093555
bref_team_id NA
[output truncated]
Python
import numpy
nba_numeric = nba._get_numeric_data()
nba_numeric.apply(numpy,.mean, axis=0)
age 26.509356
g 53.253638
gs 25.571726
[output truncated]
这里有一些明显的分歧。在两种方法中,我们均在dataframe的列上应用了一个函数。在python中,如果我们在非数值列(例如球员姓名)上应用函数,会返回一个错误。要避免这种情况,我们只有在取平均值之前选择数值列。
在R中,对字符串列求均值会得到NA——not
available(不可用)。然而,我们在取均值时需要确实忽略NA(因此需要构建我们自己的函数)。否则类似x3p.这样的一些列的均值将会为NA,这一列代表三分球的比例。有些球员没有投出三分球,他们的百分比就是缺失的。如果我们直接使用R中的mean函数,就会得到NA,除非我们指定na.rm=TRUE,在计算均值时忽略缺失值。
绘制成对散点图
一个探索数据的常用方法是查看列与列之间有多相关。我们将会比较ast,fg和trb。
R
library(GGally)
ggpairs(nba[, c("ast", "fg", "trb")])
import seaborn as snsimport matplotlib.pyplot as plt
sns.pairplot(nba[["ast", "fg", "trb"]])
plt.show()
我们会得到非常相似的两张图,但是可以看到R的数据科学生态中有许多较小的软件包(GGally是最常用的R绘图包ggplot2的辅助包)和更多的通用可视化软件包。在Python中,matplotlib是主要的绘图包,seaborn是一个广泛用于matplotlib上的图层。Python中的可视化通常只有一种蛀牙哦的方法完成某件事,而R中可能有许多包支持不同的方法(例如,至少有半打绘制成对散点图的包)。
对球员聚类
另一个很好探索数据的方式是生成类别图。这将会显示哪些球员更相似。
R
library(cluster) set.seed(1) isGoodCol <- function(col){ sum(is.na(col)) ==0&& is.numeric(col) } goodCols <- sapply(nba, isGoodCol) clusters <- kmeans(nba[,goodCols], centers=5) labels <- clusters$cluster
Python
from sklearn.cluster import KMeans kmeans_model = KMeans(n_clusters=5, random_state=1) good_columns = nba._get_numeric_data().dropna(axis=1) kmeans_model.fit(good_columns) labels = kmeans_model.labels_
为了正确的聚类,我们移除了所有非数值列,以及包含缺失值的列。在R中,我们在每一列上应用一个函数,如果该列包含任何缺失值或不是数值,则删除它。接下来我们使用cluster包实施k-means聚类,在数据中发现5个簇。通过set.seed设置随机种子以使结果可复现。
在Python中,我们使用了主要的Python机器学习包scikit-learn拟合k-means模型并得到类别标签。数据准备的过程和R非常类似,但是用到了get_numeric_data和dropna方法。
绘制类别图
我们现在可以按类别绘制球员分布图以发现模式。首先使用PCA将数据降至2维,然后画图,用不同标记或深浅的点标志类别。
nba2d <- prcomp(nba[,goodCols], center=TRUE) twoColumns <- nba2d$x[,1:2] clusplot(twoColumns, labels)
Python
from sklearn.decomposition import PCA pca_2 = PCA(2) plot_columns = pca_2.fit_transform(good_columns) plt.scatter(x=plot_columns[:,0], y=plot_columns[:,1], c=labels) plt.show()
在R中,我们通过聚类库中的函数clusplot函数绘图,使用内建函数pccomp实行PCA。
在Python中,我们使用scikit-learn库中的PCA类,使用matplotlib创建图形。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22