
通过代码实例展示Python中列表生成式的用法
这篇文章主要介绍了通过代码实例展示Python中列表生成式的用法,包括找出质数、算平方数等基本用法,需要的朋友可以参考下
1 平方列表
如果你想创建一个包含1到10的平方的列表,你可以这样做:
squares = []
for x in range(10):
squares.append(x**2)
这是一个简单的例子,但是使用列表生成式可以更简洁地创建这个列表。
squares = [x**2 for x in range(10)]
这个最简单的列表生成式由方括号开始,方括号内部先是一个表达式,其后跟着一个for语句。列表生成式总是返回一个列表。
2 整除3的数字列表
通常,你可能这样写:
numbers = []
for x in range(100):
if x % 3 == 0:
numbers.append(x)
你可以在列表生成式里包含一个if语句,来有条件地为列表添加项。为了创建一个包含0到100间能被3整除的数字列表,可以使用列表推导式:
numbers = [x for x in range(100) if x % 3 == 0]
3 找出质数
这通常要使用好几行代码来实现。
noprimes = []
for i in range(2, 8):
for j in range(i*2, 50, i):
noprimes.append(j)
primes = []
for x in range(2, 50):
if x not in noprimes:
primes.append(x)
不过,你可以使用两个列表生成式来简化代码。
noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]
第一行代码在一个列表生成式里使用了多层for循环。第一个循环是外部循环,第二个循环是是内部循环。为了找到质数,我们首先找到一个非质数的列表。通过找出2-7的倍数来产生这个非质数列表。然后我们循环遍历数字并查看每个数字是否在非质数列表。
修正:正如reddit上的shoyer指出的,使用集合(set)来查找noprimes(代码里的属性参数,译者注)效率更高。由于noprimes应该只包含唯一的值,并且我们频繁地去检查一个值是否存在,所以我们应该使用集合。集合的使用语法和列表的使用语法类似,所以我们可以这样使用:
noprimes = set(j for i in range(2, 8) for j in range(i*2, 50, i))
primes = [x for x in range(2, 50) if x not in noprimes]
4 嵌套列表降维
假设你有一个列表的列表(列表里包含列表)或者一个矩阵,
matrix = [[0,1,2,3], [4,5,6,7], [8,9,10,11]]
并且你想把它降维到一个一维列表。你可以这样做:
flattened = []
for row in matrix:
for i in row:
flattened.append(i)
使用列表生成式:
flattened = [i for row in matrix for i in row]
这使用了两个for循环去迭代整个矩阵。外层(第一个)循环按行迭代,内部(第二个)循环对该行的每个项进行迭代。
5 模拟多个掷硬币事件
假设需要模拟多次掷硬币事件,其中0表示正面,1表示反面,你可以这样编写代码:
from random import random
results = []
for x in range(10):
results.append(int(round(random())))
或者使用列表生成式使代码更简洁:
from random import random
results = [int(round(random())) for x in range(10)]
这里使用了range函数循环了10次。每一次我们都把random()的输出进行四舍五入。因为random()函数返回一个0到1的浮点数,所以对输出进行四舍五入就会返回0或者1。Round()函数返回一个浮点型数据,使用int()将其转为整型并添加到列表里。
6 移除句子中的元音字母
假设你有一个句子,
sentence = 'Your mother was a hamster'
并且你想移除所有的元音字母。我们可以使用几行代码轻易做到:
vowels = 'aeiou'
non_list = []
for l in sentence:
if not l in vowels:
non_list.append(l)
nonvowels = ''.join(non_list)
或者你可以使用列表生成式简化它:
vowels = 'aeiou'
nonvowels = ''.join([l for l in sentence if not l in vowels])
这个例子使用列表生成式创建一个字母列表,字母列表的字母来自sentence句子的非元音字母。然后我们把生成的列表传给join()函数去转换为字符串。
修正:正如reddit上的iamadogwhatisthis提出的,这个例子不需要列表生成式。使用生成器(generator)更好:
vowels = 'aeiou'
nonvowels = ''.join(l for l in sentence if not l in vowels)
注意,这里去掉了方括号。这是因为join函数接收任意可迭代的数据,包括列表或者生成器。这个没有方括号的语法使用了生成器。这产生(与列表生成式)同样的结果,相对于之前把所有条目包装成一个列表,生成器在我们遍历时才产生相应的条目。这可以使我们不必保存整个列表到内存,并且这对于处理大量数据更有效率。
7 获取目录里的文件名列表
下面的代码将会遍历my_dir目录下的文件,并在files里追加每个以txt为后缀的文件名。
import os
files = []
for f in os.listdir('./my_dir'):
if f.endswith('.txt'):
files.append(f)
这同样可以使用列表生成式简化代码:
import os
files = [f for f in os.listdir('./my_dir') if f.endswith('.txt')]
或者你可以获取一个相对路径的列表:
import os
files = [os.path.join('./my_dir', f) for f in os.listdir('./my_dir') if f.endswith('.txt')]
感谢reddit上的rasbt提供。
8 将csv文件读取为字典列表
我们常常需要读取和处理csv文件的数据。处理csv数据的一个最有用的方法就是把它转换为一个字典列表。
import csv
data = []
for x in csv.DictReader(open('file.csv', 'rU')):
data.append(x)
你可以使用列表生成式快速实现:
import csv
data = [ x for x in csv.DictReader(open('file.csv', 'rU'))]
DictReader类将会自动地使用csv文件的第一行作为字典的key属性名。DictReader类返回一个将会遍历csv文件所有行的对象。这个文件对象通过open()函数产生。我们提供了open()两个参数–第一个是csv文件名,第二个是模式。在这例子,‘rU'有两个意思。想往常一样,‘r'表示以读模式打开文件。‘U'表明我们将会接受通用换行符–‘n',‘r'和‘rn'。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18