
求职丨我是如何成为了谷歌的软件工程师
大家好,有很多人问我如何获得谷歌的软件工程师工作,在本文中我将分享我是怎么做的。
用相同的方法,你也可以在谷歌、亚马逊、微软、Facebook等顶尖科技公司获得软件工程师的工作。
在以上公司顺利求职共需要6个步骤,此外我还将讨论以下内容:
· 首先该如何学习编程
· 学会程后要学什么
· 如何获得第一份编程工作或实习机会
· 软件工程师工作求职的最佳方式
· 如何充分准备编程面试
· 是否要获得计算机科学学位?
· 是否要毕业于顶尖大学?
好的,我们开始吧!
第1步:学习编程
这是成为软件工程师所需的最低要求。
为此,我建议你使用Codecademy和freeCodeCamp等交互式网站。在这些网站上你可以学习大多数编程基础知识,SoloLearn也是不错的选择。
之后,我会使用视频教程来学习更深入的知识。我推荐YouTube,Pluralsight,Lynda.com和Udemy等网站。在这些网站上,你能够找到以下主题的教程:
· Web开发
· 移动开发
· 游戏开发
取决于你的兴趣。
但是等一下,我应该先学习哪种编程语言呢?
我的简短回答是,选择JavaScript或Python,但这实际上取决于你的兴趣。我在之前的文章中有探讨过这个问题。
第2步:做些个人项目
在学习了一些编程教程之后,你应该通过构建一些个人项目来练习学到的知识。
为此,你应该找到你感兴趣的东西。
例如,如果你喜欢摄影,那么你可以开发一个网站整理你所拍的照片。如果你对股票感兴趣,那么可以构建一个系统来分析股票图表。如果你喜欢解决问题,那么可以尝试参加编程比赛。
当处理项目时,首先要尽可能靠自己完成。然后,如果遇到困难,可以使用在线或离线资源获取其他人的帮助。例如,如果遇到与编程相关的问题,你可以在Stack Overflow对特定技术问题进行提问。
第3步:获得第一份编程工作或实习
一旦完成了一些个人项目,你就有更有机会获得第一份编程工作或实习。从而在与顶级科技公司面谈之前,你将有一些编程的经验。
你完全有可能在一家顶级科技公司获得第一份工作,但是这种几率比较小,你获得的第一份工作更可能是在一家不那么知名的公司。
申请软件工程师工作的最佳方式
除了在网上投简历,你还有其他的方法可以尝试。
这里我建议你使用LinkedIn等人脉网络。
在LinkedIn上找到你感兴趣的公司的招聘人员。然后,你可以问他们,你是否有资格获得你感兴趣的职位。如果你的资格还不够,你也应该问他们该如何更好地做准备。
还有Meetup这种人脉网络的网站,你可以直接与当地公司的工程师和招聘人员进行交流。
这还不是全部。
LinkedIn这种人脉网站对于中小型公司的职位很适用。但是,对于想应聘谷歌和Facebook等大型公司而言,效果就不那么好了。
对于这些大公司,我建议结合以下三种方法:
1.参加附近大学举办的招聘会。
2.通过在其中一家公司工作朋友的推荐。
3.网上投简历。
结合这些方法能够增加你获得大型公司面试的机会。
第4步:学习数据结构和算法
谷歌和微软等顶级科技公司在面试时,经常会问到关于数据结构和算法的问题。所以,如果你对这方面不太了解,那么你应该学习。
针对这方面的基础知识,我推荐我YouTube频道的数据结构和算法系列视频。
除此之外,我还推荐以下课程:
Coursera上的斯坦福课程
https://www.coursera.org/specializations/algorithms
YouTube上的麻省理工学院课程
https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb
书籍:
The Algorithm Design Manual 作者 Skiena
Algorithms 作者 Robert Sedgewick
第5步:准备编程面试
谷歌和微软等公司的面试很难,但可以有针对性的进行准备。
一旦你对数据结构和算法有了深入了解,我就会推荐以下三种资源用于练习:
· Leetcode——练习编程面试问题的互动平台。
· 《搞定编程面试》(Cracking the Coding Interview)——关于编程面试的热门书籍。
· 每日编程问题(Daily Coding Problem) ——每天给你提供一个编程问题的邮件列表。
在自己练习几周之后,你可以开始进行模拟面试。
怎么做模拟面试
· 与你的朋友一起练习,从我以上提到的资源中选问题互相提问。
· 解答每个问题,并对你的解决方案进行解释。
· 在练习时,除了充当面试者,还要充当面试官的角色,从而揣摩面试官的想法。
进行了约20次模拟面试之后,你将对实际面试有一定把握。
第6步:不断尝试
使用我以上提到的三种方法应聘顶级科技公司:
· 招聘活动/招聘会
· 朋友推荐
· 网上求职
如果第一次没有成功,请不要泄气。在找到心仪的工作前必然会经历一些失败。
在我成为谷歌的软件工程师之前,我曾尝试了五次。
总结:
第1步:学习编码
第2步:做些个人项目
第3步:获得第一份编程工作或实习
第4步:学习数据结构和算法
第5步:准备编程面试
第6步:不断尝试
等等,真的那么简单吗?
是的,但是完成这六个步骤需要大量的时间和精力。
其他问题
问题1:我需要获得计算机科学学位吗?
不用,但是拥有计算机科学学位有很大帮助。如果你参加一个完善的计算机科学课程,当中包含了步骤1,2,3和4的大部分内容(学习编程,做个人项目,获得第一个编程工作或实习,以及学习数据结构和算法)。
如果没有计算机科学学位,你需要自学当中许多内容。
要注意,即使拥有CS学位,成为顶级科技公司的软件工程师也需要付出很多努力。
问题2:我是否需要毕业于麻省理工学院,斯坦福大学,卡内基梅隆大学等顶尖大学?
同样,并不需要。毕业于顶尖大学当然有些帮助,但这并不是必备条件。
谷歌人事业务部的高级副总裁Laszlo Bock也同意这一观点。
在他的书《Work Rules!》中提到,比起来自麻省理工学院等顶尖学校但表现平庸的学生,谷歌更青睐来自普通院校但表现优异的学生。
我认为这是有道理的,如果你很聪明且专注,那么来自哪所学校并不重要。
问题3:我需要很高的GPA(绩点)吗?
不用。
较高的绩点在面试中有一定优势,但你拥有扎实的实践经验,且完成了有趣的项目更为重要。
事实上,根据《Work Rules!》,谷歌过去常常注重面试者的绩点。然而之后他们发现,较高的绩点并不意味着出色的工作能力,因此谷歌不再强调面试者的绩点。
问题4:那我需要什么?
你所需要的是强大的编程能力和解决问题的能力,熟练掌握计算机科学的基础知识,以及在简历中展示出完成的项目和具备的经验。
根据我在文中提到的六个步骤,你就能做到。
问题5:怎么能写一篇好的简历呢?
你可以参考我在面试谷歌时用的简历。
简历的篇幅最好控制在一页,我的稍微有些长,但可以作为参考。
写简历的其他资源 :
· CareerCup上有这方面的资源:
https://www.careercup.com/resume
· 我的朋友Zhia Hwa Chong是Twitter的软件工程师,关于写简历他写了一篇很棒的文章。
https://medium.freecodecamp.org/how-to-write-a-great-resume-for-software-engineers-75d514dd8322
祝你好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04