京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分形理论在量化投资中的大趋势预测应用
在资本市场中,对股票价格规律的刻画一直是学者广泛关注的重大研究课题。股价的大幅波动通常伴随着高风险和高收益,因此,寻求一种能够定量地解释或描述大幅股价波动的某些特征的方法,对防范和控制金融风险十分必要。
许多研究已经股票市场是一个复杂的分形客体,多重分形理论是定量描述复杂体系内部的非线性运行规律的有效手段之一,在资本市场的复杂性方面具有有效的应用。
1、多重分形模型
1)模型
将多重分形理论应用于金融分析中,则求解多重分形分布的步骤如下:
(1)将股指时间序列pi进行归一化处理,用pi表示:Pi=Pi/ΣPi,并将归一化后的时间序列分成时间长度为T的不重叠的时间窗。
(2)求出每个时间窗内(或盒子内)的价位概率以Pj(T),该价位概率等于每个时间窗内所有归一化后的时间序列的和。
(3)选取适当的q值,通过Pj(T)计算q的配分函数:
式中:n是时间长度为T的时间窗总数,q是-∞到+∞上的实数。对于多重分形分布,配分函数随时间长度服从如下的标度关系:
(4)根据公式(2)做出相应的InMq(T)-lnT曲线,如果lnMq(T)随InT的变化有较好的线性关系,说明此分布属于多重分形分布。lnMq(T)-lnT曲线的斜率就是τ(q),从τ(q)中可以计算出多重分形谱?(α),其计算公式如下:
2)模型中参数的意义
α描述了时间序列中各个区间不同的奇异程度,分形谱的宽度△α=αmax-αmax为最大、最小概率间的差别,它说明了整个分形结构上的归一化价格分布的均匀程度。将其应用在股价指数时间序列中,则α反映了股价指数的大小,α越小,指数值越高;α越大,指数值越低。αmax表示的是指数的最低值,△α。表示的是指数的最低值。△a反映了指数的涨落程度。△α越大,表示股价指数波动越剧烈;△a=O,则对应完全均匀分布的情况
?(α)反映了所对应的指数值出现的次数。?(α)越大,则出现的次数越多.? (α min)和?(α max)是对应α min子集的分形维数。?(α min)表示归一化价格高的股价指数出现的次数;?(α max)表示归一化价格低的指数出现的次数。△?=?(α min)-?(α max)反映了最高、最低价位出现频率的变化。△?>0,表示在每组数据中股价指数达到最高点的次数多于达到最低点的次数;△?<0,表示在每组数据中股价指数达到最高点的次数少于达到最低点的次数。
?(α)的的最大值即为多重分形谱的峰值,对应于该峰值的α记为α0:而特征参数△α可分解为△αL,=α0-α min和△αR=α max-α0,它们分别代表多重分形谱左右两侧的α值范围,其比值反映了左偏、右偏的程度,即多重分形谱的偏斜系数R =△αL/△αR。当R>1时,谱的顶点右偏,且值越大,向右偏斜程度越高;当R<1时,谱的顶点左偏,且值越小,其向左偏斜程度越高;当R=1时,谱的形状对称。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23