京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分形理论在量化投资中的大趋势预测应用
在资本市场中,对股票价格规律的刻画一直是学者广泛关注的重大研究课题。股价的大幅波动通常伴随着高风险和高收益,因此,寻求一种能够定量地解释或描述大幅股价波动的某些特征的方法,对防范和控制金融风险十分必要。
许多研究已经股票市场是一个复杂的分形客体,多重分形理论是定量描述复杂体系内部的非线性运行规律的有效手段之一,在资本市场的复杂性方面具有有效的应用。
1、多重分形模型
1)模型
将多重分形理论应用于金融分析中,则求解多重分形分布的步骤如下:
(1)将股指时间序列pi进行归一化处理,用pi表示:Pi=Pi/ΣPi,并将归一化后的时间序列分成时间长度为T的不重叠的时间窗。
(2)求出每个时间窗内(或盒子内)的价位概率以Pj(T),该价位概率等于每个时间窗内所有归一化后的时间序列的和。
(3)选取适当的q值,通过Pj(T)计算q的配分函数:
式中:n是时间长度为T的时间窗总数,q是-∞到+∞上的实数。对于多重分形分布,配分函数随时间长度服从如下的标度关系:
(4)根据公式(2)做出相应的InMq(T)-lnT曲线,如果lnMq(T)随InT的变化有较好的线性关系,说明此分布属于多重分形分布。lnMq(T)-lnT曲线的斜率就是τ(q),从τ(q)中可以计算出多重分形谱?(α),其计算公式如下:
2)模型中参数的意义
α描述了时间序列中各个区间不同的奇异程度,分形谱的宽度△α=αmax-αmax为最大、最小概率间的差别,它说明了整个分形结构上的归一化价格分布的均匀程度。将其应用在股价指数时间序列中,则α反映了股价指数的大小,α越小,指数值越高;α越大,指数值越低。αmax表示的是指数的最低值,△α。表示的是指数的最低值。△a反映了指数的涨落程度。△α越大,表示股价指数波动越剧烈;△a=O,则对应完全均匀分布的情况
?(α)反映了所对应的指数值出现的次数。?(α)越大,则出现的次数越多.? (α min)和?(α max)是对应α min子集的分形维数。?(α min)表示归一化价格高的股价指数出现的次数;?(α max)表示归一化价格低的指数出现的次数。△?=?(α min)-?(α max)反映了最高、最低价位出现频率的变化。△?>0,表示在每组数据中股价指数达到最高点的次数多于达到最低点的次数;△?<0,表示在每组数据中股价指数达到最高点的次数少于达到最低点的次数。
?(α)的的最大值即为多重分形谱的峰值,对应于该峰值的α记为α0:而特征参数△α可分解为△αL,=α0-α min和△αR=α max-α0,它们分别代表多重分形谱左右两侧的α值范围,其比值反映了左偏、右偏的程度,即多重分形谱的偏斜系数R =△αL/△αR。当R>1时,谱的顶点右偏,且值越大,向右偏斜程度越高;当R<1时,谱的顶点左偏,且值越小,其向左偏斜程度越高;当R=1时,谱的形状对称。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05