京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分形理论在量化投资中的汇率预测应用
随着全球金融一体化的发展及国际间的资本流动加快的影响,国际金融市场变得越来越复杂,竟争日趋橄烈,而反映它变化的汇率越来越被人们所重视,因此对它所进行的研究也成为近几年十分热门的话题。
最新的研究指出,汇率变化是一个具有非线性特征的变化过程,而分形理论又线性理论中比较常用的理论之一同时,分形理论中的思维角度和计算方法都给金融问题提供了十分有效的解决方案,而对于汇率的研究也是这一领域中的一个重要分支,可见用分形理论来研究汇率问题是十分恰当的。
1、R/S分析方法简述
R/S分析(The Rescaled Range Analysis,重标极差分析)最初是由水纹专家H.E.Hurst在1951年提出来的,是最著名的分形分析方法之一。该方法主要通过R/S计算出该序列的H值,并根据H值来判断该序列的性质。
1)计算重标极差(R/S)
设一个时间序列Pt,观测次数为m,将其转换为长度为M=m-1的常用对数比率时间序列:Xt=lnPt-lnPt-1。将这个长度为M的时间序列{Xt}分成A个长度为N(2≤N≤L,L表示最长子区间的长度)的相邻子区间,使得A×N=M。用Iα代表每个子区间,其中α=1,2,…,A;将每个Iα上的Xt记为Xk,其中k = 1,2,…,N。设Ia上的{Xt}的均值为Xα,则有如下计算公式:
(1)
(2)
(3)
(4)
式(1)~(4)中:
N—子区间,Iα的长度。
Dk,α—子区间Ia的累积离差。
RI,a—子区间Ia的极差。
SI,α—第α个区间Ia的标准差。
(R/S)N—重标极差。
2)估计平均循环长度
所谓平均循环长度,指的就是时间序列具有“长期记忆”特性的长度。根据Peters(1994)的研究,可以借助V统计量来估计序列的平均循环长度,其计算公式为:
(5)
3)计算Hurst指数
因为(R/S)N=C×N H,所以将此式两边取对数得:
(6)
然后就将平均循环长度内的值及其相应的N值代入上式,用OLS求解H值。
4)计算R/S期望值
彼得斯(Peters)给出了高斯型序列的R/S期望值的计算公式:
(7)
将E(R/S) N和log N代入式(8),用OLS可得高斯型序列的H指数期望值E( H):
(8)
5)通过H值判断序列走势
Hurst指数和相应的时间序列分为3种类型:
(1)当H=0.5时,时间序列是随机游走的。序列中不同时间的值是随机的和不相关的,即现在不会影响将来。
(2)当0≤H≤0.5时,这是一种反持久性的时间序列,常被称为均值回复。如果一个序列在前一时期是向上走的,那么它在下一个时期多半是向下走的,反之亦然。这种反持久性的强度依赖于H离零有多近,越接近于零,这种时间序列就具有比随机序列更强的突变性或易变性。
(3)当0.5≤H≤1时,表明序列具有持续性,存在长期记忆性的特征。即前一个时期序列是向上(下)走的,那下一个时期将多半继续是向上(下)走的。趋势增为的强度或持久性随H接近于1而增加。
6)根据V(R/S)与V(E(R/S))统计量图
选出统计量的走势由上升转为下降或是保持不变的点,而这个点正是序列的长期记忆过程消失的临界点,这个点对应的N就是序列的平均循环长度。但如果图像中这样的临界点不是唯一的时候,可根据假设检验来选择出真正的临界点,具体计算如下:
(9)
(10)
(11)
其中,
其中,T为样本中所有的观测数目。在实际应用中,R2要达到多大才算模型通过了检验,没有绝对的标准,而是要根据实际情况而定,它只是说明所得到的一元线性回归方程的拟合程度。T检验是判断x变量是否是显著的,如果结果判断出x是不显著的,则可在已建立好的模型中去除这个变量;如果判断出x是显著的,那么在模型中就应保留该变量。对于多元线性回归模型,方程的总体线性关系是显著的,并不能说明每个解释变最对被解释变最的影响都是显著的,必须对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。
由于Hurst指数遵循正态分布,因此需要将它为标准正态分布(即S统计量),然后选择一个置信度,通过假设检验来判断序列是否遵循随机游走。如果S统计量在域中,表明序列遵循随机游走,R/S分析结果是显著的,该点即真正的转折点;若不在域中,则表明序列并未显著偏离随机游走,R/S分析结果不显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08