京公网安备 11010802034615号
经营许可证编号:京B2-20210330
区块链是如何重塑广告和媒体领域的
数字广告欺诈是商业界的一个重大问题。事实上,广告欺诈是一个非常严重的问题,37%的受访广告客户会乐意支付额外费用,以确保他们所支付的流量能与一个真正的人联系在一起。
作为一个在互联网上建立了整个职业生涯的人,我已经意识到广告欺诈的每一步。这就是为什么我从来没有急于把钱投入到数字广告活动中,而宁愿走更长的路去想如何推动有机交通的原因。
当你知道这台机器坏了,干吗一直往里面装二角五分硬币呢?
尽管有大量盈利的业务是建立在套利网络流量和通过数字广告转换潜在客户的基础之上的,但该行业仍然需要进行大规模的改革。而阻止广告商防范欺诈的一个问题就是验证所支付行动的可信性:比如点击率、浏览量等。许多这些度量标准可以被机器自动化,并且很难知道哪些是真实的,哪些不是。
在过去的一年里,我被区块链技术迷住了。
我沉浸在其中。我已经为这个领域的新兴公司写了一些白皮书。我被请到了ShipChain、RedPen、MagnaChain等公司担任顾问。
从供应链跟踪到作者可信度,再到提供允许开发人员在一个公共区块链上启动当前和未来游戏的软件开发工具包,用例是无穷无尽的——我真的相信,我们正在目睹下一个伟大的技术进步。但我认为迫切需要关注的一个用例是数字广告欺诈。而区块链技术则是解决一个看似不可能解决的问题的方法。
以下是PPC Protect提供的一些让人震惊的统计数据:
广告欺诈统计
·广告欺诈僵尸网络“变色龙”每月花费广告客户600万美元以上(Spider.io,2016)。
·2016年,营销人员因数字广告欺诈而损失了72亿美元(WhiteOps,2016)。
·在5个为广告服务的网站中,就有1个是骗子(The Verge,2017)。
·每花3美元在数字广告上,有1美元就是欺诈(Adage.com,2015)。
·全年的欺诈程度并不一致。无论何时何地,只要数字广告的需求超过了供应,就会有人提出欺诈。(WhiteOps,2017)
·2017年,美国品牌将因广告欺诈损失65亿美元(营销周刊,2017)
·综合广告科学公司(Integral Ad Science)检查的显示广告发现,8.3%的印象都是虚假的(Integral Ad Science,2016)。
广告网络
目前,广告商和媒体公司倾向于使用广告网络来寻找广告,广告网络将建立一个客户和媒体来源的书,收集大量的广告预付款,然后通过媒体来源监控广告的放置和表现。
Google AdSense是这些提供者中最大的,但往往支付较少而且更容易访问。其他的广告网络专注于某些类型的内容或公司。在这个过程中,他们都会占用广告支出中的很大一部分。
当你思考区块链是如何在这里提供一个解决方案时,我告诉你这项技术可以使广告商和媒体公司合作。广告查看可以在区块链上进行验证,并通过智能合约自动地分散支付。
当然,该技术进入的障碍将是最初的市场采用和建设技术的速度要求。
媒体购买
传统的媒体购买是指在电视、广播、广告牌等方面购买广告,这需要某种形式的销售系统。。然而,传统媒体购买目前却被文书工作和其他低效率所拖累。
这里的解决方案是尽可能多地解决这些效率低下的问题——而不是在屏幕上记录发生过的同样事情。因为这并不会导致效率的提高,这只是对过时系统的小小升级而已。
我知道AdBit正在启动一个去块链解决方案,将传统媒体购买者直接与媒体提供商联系起来,用智能合约跟踪交易。这将让购买者更放心,因为他们知道自己实际上得到了所需的广告,并获得了关于竞选业绩的更多信息——这样做的目的是改善购买广告的体验,帮助媒体所有者更成功地将其受众货币化。
广告交易平台
虽然前两个解决方案侧重于将媒体所有者和广告购买者联系起来,但也存在分散的广告交易平台的潜力。在这个系统中,广告客户可以指定一个价格和人口,并让他们的广告自动托管。这将类似于Facebook的广告,但可以更好地为广告商量身定做,从而在更大的范围内找到客户。
建立一个分散的自治组织(DAO)来管理广告单元和广告代币的交易,可以帮助解决这个问题。这里最大的障碍之一是交易的速度要求。当某人查看一个广告空间时,广告客户需要在数秒内支付广告空间的费用。随着区块链速度的提高和分散化的交换经历更准确的测试,这将可能是一个主要的解决方案,可以帮助广告商和内容提供商获得更多的利润。
个人资料
许多区块链爱好者最喜欢的是能够在区块链上销售自己的数据。这里的想法是,像Facebook和Google这样的公司可以为你的收视率和信息获得报酬。然而,在区块链上,广告商可以直接支付用户的个人数据费用,而不是通过中介支付。
然而,这个用例需要一段时间才能建立起来。从长远来看,公司将需要从与中间商合作转变为处理每个用户的数据集。此外,还需要有足够的公司在平台上花钱,以激励用户参与。
随着区块链速度的提高和智能合约的改进,以及越来越多的公司采用区块链技术,在广告领域使用该技术也变的越来越有希望。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22