
都在说量化投资,可是你知道基金的量化怎么玩吗
上半年以来,A股的“漂亮50”行情持续走强,这与中小创形成了冰火两重天的景象。极端分化的市场风格对基金的业绩影响尤为明显。特别是去年业绩表现较好的基金,在小市值股票上的投资比例过高,难免会在市场风格转换时策略失效。
不过,随着下半年行情的企稳,不少量化基金业绩开始回暖。根据私募排排网数据中心统计,今年以来,目前市场上221只股票策略量化基金的平均收益率为0.4%,领先同期全部A股平均收益率0.75%。其中有111只股票策略量化基金取得正收益,占比50.23%,其中112只跑赢上证A股平均收益率,占比50.68%。
市场风险捉摸不定,基金收益扑朔迷离
今年以来,货币与财政政策双双趋紧,金融监管更加严格,加上美联储缩表预期以及外部地缘政治风险等因素,对国内的资金面和股市都产生了不利影响,其中A股交易量在一二季度有所萎缩。上半年一些超级大盘蓝筹股出现了显著的上涨,股票策略的量化基金收益率频频创新高。
![]() |
但进入年中后,一线蓝筹开始扩散,上半年一些表现较好的政策性板块,如雄安概念、一带一路概念、京津冀概念、沪深港概念和粤港澳概念股在近期都偃旗息鼓,板块轮动将更加频繁,收益的不确定性逐渐增加。主观性投资可操作性降低,量化投资山雨欲来。
当前量化投资的几大趋势1小市值因子的失效
尤其是在2016年底和2017年3份以来,市值因子方向发生扭转,由偏向小市值变为偏向大市值。简单说就是,大中小盘指数在2016年底走势基本相同,同时小盘股波动大于大盘股。但在2017年之后,指数走势开始明显偏离,超大盘和大盘指数获得了正收益,中盘和小盘指数则明显下跌。
![]() |
2014年以来,如果持有的股票出现显著上涨将其卖出,如果出现下跌将其买进持有,会带来非常好的超额收益。但从今年3月份以来,发生了显著的反转,即强者恒强,弱者恒弱。
3 价值因子在崛起
在2017年之后超额收益表现的很明显,价值因子在凸显。关注市净率低的股票的同时,也要关注市盈率低的股票,如茅台(600519,股吧)、美的、格力等白马龙头股,都取得了不错的收益。
4 获取超额收益的难度越来越大
一面是价值股的“漂亮50”表现靓丽,另一面是“要命3000”的市场下跌,使得量化投资的分散投资以降低个股风险的原则受到挑战。较大的分散持仓会加大选到下跌股票的概率。
量化投资正在进行时
过去由于制度不健全,信息流通不畅,优先获得信息的优势很明显,同时这也是当时获利的主要手段。但现在,获得信息的渠道越来越多,信息逐步透明化,如何去伪存真,辨别有用的信息越来越变得非常重要。另一方面,金融监管加强,对内幕交易、操纵市场行为打击力度也越来越大,使得获得所有信息的难度和风险大大提高。这个难题如何解决?就算获得了海量数据,难道就真的能利用数据优势获取收益吗?量化投资似乎能给出答案。所谓量化投资,就是从海量的数据中发掘出规律,进而制定有效的投资策略,把策略变成一系列明晰的投资规则,并由计算机自动化、有纪律地执行。
量化投资主要的目标就是获取超额收益。一般来说,股票策略量化基金的收益主要来自于股票的超额收益,而股票收益来源又分为两部分:一是市场收益,我们称之为β;二是个股的超额收益,称之为α。
![]() |
中国市场由于具有牛短熊长、大起大落的特征,以沪深300为例,其10年年化收益为3.9%,因此如果要想获得更高的收益,就要在个股的超额收益上下功夫。
目前,基金的量化投资参与者在逐步增加,策略同质化现象也越来越严重,要想获得长期的较好的收益,如何扩展数据源并获得独特的超额收益,是每个量化投资团队获得竞争优势的努力方向。
基金量化投资:完善的数据源是基础,分散风险是前提
提到基金的量化投资,除了超额收益、程序化高频交易外,你还想到了什么?没错,还有大数据。正是量化投资的基础,其实本质上是系统性投资。而这种系统性则是建立在完善的数据源基础上。
融智数据中心的数据一直被业界及媒体广为引用,是行业数据收集最全和数量最多的机构之一。截至2017年7月,组合大师数据库覆盖私募基金近十五万,其中不含单账户、海外基金及其他,基金经理近万个,对冲基金公司近2万家(不含审计机构等公司)。
作为一款专属于私募基金投资者大数据智能投顾软件,银行、券商、信托、公募基金、保险等机构投资者均可在私募排排网“组合大师”的数据库中对私募市场进行分析和挖掘,找出收益与风险、融智测评、价值成长持仓偏好、选股择时能力、行业配置特点等市场非常有效的因子,然后通过因子的组合选择股票,形成选股模型,弥补传统投资方式的不足,更好地帮助投资者控制风险并取得最大收益。
在分散和控制风险方面,私募排排网“组合大师”通过组合录入、组合的分析与管理功能,跟踪组合业绩表现,分解组合业绩来源,分析组合风格、组合构建等方式,进行高效的大类资产配置, 构建FOF投资组合, 并进行组合管理,有效分散并控制风险,实现收益最大化。
结语
李开复曾公开表态,未来十年,80%金融从业者会被人工智能(AI)取代,纯数字领域的金融,是AI最好的应用领域之一。
其实,严格意义上的量化投资,是从数据库的建立、到因子挖掘、Alpha选股策略形成、到风险分解与控制、到模拟交易与业绩归因、到持仓与自动交易,形成系统化的投资方式,量化大数据贯穿于全程。而基金的量化投资正是基于完善的数据源,利用科技进行投资风险的对冲与分散,做到收益最大化。
市场在不断变化波动,多数投资者既不具备敏锐的市场洞察力,也不具备根据市场变化调整资产配置的能力。而随着未来科技水平的进步和量化投资的普及,将会涌现出更多的类似组合大师这样的“金融+科技”的创新产品,为基金量化投资者提供更多高品质的私人财富管理服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08