
都在说量化投资,可是你知道基金的量化怎么玩吗
上半年以来,A股的“漂亮50”行情持续走强,这与中小创形成了冰火两重天的景象。极端分化的市场风格对基金的业绩影响尤为明显。特别是去年业绩表现较好的基金,在小市值股票上的投资比例过高,难免会在市场风格转换时策略失效。
不过,随着下半年行情的企稳,不少量化基金业绩开始回暖。根据私募排排网数据中心统计,今年以来,目前市场上221只股票策略量化基金的平均收益率为0.4%,领先同期全部A股平均收益率0.75%。其中有111只股票策略量化基金取得正收益,占比50.23%,其中112只跑赢上证A股平均收益率,占比50.68%。
市场风险捉摸不定,基金收益扑朔迷离
今年以来,货币与财政政策双双趋紧,金融监管更加严格,加上美联储缩表预期以及外部地缘政治风险等因素,对国内的资金面和股市都产生了不利影响,其中A股交易量在一二季度有所萎缩。上半年一些超级大盘蓝筹股出现了显著的上涨,股票策略的量化基金收益率频频创新高。
![]() |
但进入年中后,一线蓝筹开始扩散,上半年一些表现较好的政策性板块,如雄安概念、一带一路概念、京津冀概念、沪深港概念和粤港澳概念股在近期都偃旗息鼓,板块轮动将更加频繁,收益的不确定性逐渐增加。主观性投资可操作性降低,量化投资山雨欲来。
当前量化投资的几大趋势1小市值因子的失效
尤其是在2016年底和2017年3份以来,市值因子方向发生扭转,由偏向小市值变为偏向大市值。简单说就是,大中小盘指数在2016年底走势基本相同,同时小盘股波动大于大盘股。但在2017年之后,指数走势开始明显偏离,超大盘和大盘指数获得了正收益,中盘和小盘指数则明显下跌。
![]() |
2014年以来,如果持有的股票出现显著上涨将其卖出,如果出现下跌将其买进持有,会带来非常好的超额收益。但从今年3月份以来,发生了显著的反转,即强者恒强,弱者恒弱。
3 价值因子在崛起
在2017年之后超额收益表现的很明显,价值因子在凸显。关注市净率低的股票的同时,也要关注市盈率低的股票,如茅台(600519,股吧)、美的、格力等白马龙头股,都取得了不错的收益。
4 获取超额收益的难度越来越大
一面是价值股的“漂亮50”表现靓丽,另一面是“要命3000”的市场下跌,使得量化投资的分散投资以降低个股风险的原则受到挑战。较大的分散持仓会加大选到下跌股票的概率。
量化投资正在进行时
过去由于制度不健全,信息流通不畅,优先获得信息的优势很明显,同时这也是当时获利的主要手段。但现在,获得信息的渠道越来越多,信息逐步透明化,如何去伪存真,辨别有用的信息越来越变得非常重要。另一方面,金融监管加强,对内幕交易、操纵市场行为打击力度也越来越大,使得获得所有信息的难度和风险大大提高。这个难题如何解决?就算获得了海量数据,难道就真的能利用数据优势获取收益吗?量化投资似乎能给出答案。所谓量化投资,就是从海量的数据中发掘出规律,进而制定有效的投资策略,把策略变成一系列明晰的投资规则,并由计算机自动化、有纪律地执行。
量化投资主要的目标就是获取超额收益。一般来说,股票策略量化基金的收益主要来自于股票的超额收益,而股票收益来源又分为两部分:一是市场收益,我们称之为β;二是个股的超额收益,称之为α。
![]() |
中国市场由于具有牛短熊长、大起大落的特征,以沪深300为例,其10年年化收益为3.9%,因此如果要想获得更高的收益,就要在个股的超额收益上下功夫。
目前,基金的量化投资参与者在逐步增加,策略同质化现象也越来越严重,要想获得长期的较好的收益,如何扩展数据源并获得独特的超额收益,是每个量化投资团队获得竞争优势的努力方向。
基金量化投资:完善的数据源是基础,分散风险是前提
提到基金的量化投资,除了超额收益、程序化高频交易外,你还想到了什么?没错,还有大数据。正是量化投资的基础,其实本质上是系统性投资。而这种系统性则是建立在完善的数据源基础上。
融智数据中心的数据一直被业界及媒体广为引用,是行业数据收集最全和数量最多的机构之一。截至2017年7月,组合大师数据库覆盖私募基金近十五万,其中不含单账户、海外基金及其他,基金经理近万个,对冲基金公司近2万家(不含审计机构等公司)。
作为一款专属于私募基金投资者大数据智能投顾软件,银行、券商、信托、公募基金、保险等机构投资者均可在私募排排网“组合大师”的数据库中对私募市场进行分析和挖掘,找出收益与风险、融智测评、价值成长持仓偏好、选股择时能力、行业配置特点等市场非常有效的因子,然后通过因子的组合选择股票,形成选股模型,弥补传统投资方式的不足,更好地帮助投资者控制风险并取得最大收益。
在分散和控制风险方面,私募排排网“组合大师”通过组合录入、组合的分析与管理功能,跟踪组合业绩表现,分解组合业绩来源,分析组合风格、组合构建等方式,进行高效的大类资产配置, 构建FOF投资组合, 并进行组合管理,有效分散并控制风险,实现收益最大化。
结语
李开复曾公开表态,未来十年,80%金融从业者会被人工智能(AI)取代,纯数字领域的金融,是AI最好的应用领域之一。
其实,严格意义上的量化投资,是从数据库的建立、到因子挖掘、Alpha选股策略形成、到风险分解与控制、到模拟交易与业绩归因、到持仓与自动交易,形成系统化的投资方式,量化大数据贯穿于全程。而基金的量化投资正是基于完善的数据源,利用科技进行投资风险的对冲与分散,做到收益最大化。
市场在不断变化波动,多数投资者既不具备敏锐的市场洞察力,也不具备根据市场变化调整资产配置的能力。而随着未来科技水平的进步和量化投资的普及,将会涌现出更多的类似组合大师这样的“金融+科技”的创新产品,为基金量化投资者提供更多高品质的私人财富管理服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25