
通过实例浅析Python对比C语言的编程思想差异
我一直使用 Python,用它处理各种数据科学项目。 Python 以易用闻名。有编码经验者学习数天就能上手(或有效使用它)。
听起来很不错,不过,如果你既用 Python,同时也是用其他语言,比如说 C 的话,或许会存在一些问题。
给你举个我自己经历的例子吧。 我精通命令式语言,如 C 和 C++。对古老经典的语言如 Lisp 和 Prolog 能熟练使用。另外,我也用过 Java,Javascript 和 PHP 一段时间。(那么,学习) Python 对我来讲不是很简单吗?事实上,只是看起来容易,我给自己挖了个坑:我像用 C 一样去用 Python。
具体情况,请向下看。
一个最近的项目中,需要处理地理空间数据。给出(任务)是 gps 追踪 25,000 个左右位置点,需要根据给定的经纬度,重复定位距离最短的点。我第一反应是,翻查(已经实现的)计算已知经纬度两点间距离的代码片段。代码可以在 John D. Cook 写的这篇 code available in the public domain 中找得到。
万事俱备! 只要写一段 Python 函数,返回与输入坐标距离最短的点索引(25,000 点数组中的索引),就万事大吉了:
def closest_distance(lat,lon,trkpts):
d = 100000.0
best = -1
r = trkpts.index
for i in r:
lati = trkpts.ix[i,'Lat']
loni = trkpts.ix[i,'Lon']
md = distance_on_unit_sphere(lat, lon, lati, loni)
if d > md
best = i
d = md
return best
其中, distance_on_unit_sphere 是 John D. Cook's 书中的函数,trkpts 是数组,包含 gps 追踪的点坐标(实际上,是 pandas 中的数据帧,注,pandas 是 python 第三方数据分析扩展包)。
上述函数与我以前用 C 实现的函数基本相同。 它遍历(迭代)trkpts 数组,将迄今为止(距离给定坐标位置)的距离最短的点索引值,保存到本地变量 best 中。
目前为止,情况还不错,虽然 Python 语法与 C 有很多差别,但写这段代码,并没有花去我太多时间。
代码写起来快,但执行起来却很慢。例如,我指定428 个点,命名为waypoints(导航点,路点,导航路线中的关键点)。导航时,我要为每个导航点 waypoint 找出距离最短的点。为 428 个导航点 waypoint 查找距离最短点的程序,在我的笔记本上运行了 3 分 6 秒。
之后,我改为查询计算曼哈坦距离,这是近似值。我不再计算两点间的精确距离,而是计算东西轴距离和南北轴距离。计算曼哈坦距离的函数如下:
def manhattan_distance(lat1, lon1, lat2, lon2):
lat = (lat1+lat2)/2.0
return abs(lat1-lat2)+abs(math.cos(math.radians(lat))*(lon1-lon2))
实际上,我用了一个更简化的函数,忽略一个因素,即维度曲线上 1 度差距比经度曲线上的 1 度差距要大得多。简化函数如下:
def manhattan_distance1(lat1, lon1, lat2, lon2):
return abs(lat1-lat2)+abs(lon1-lon2)
closest 函数修改为:
def closest_manhattan_distance1(lat,lon,trkpts):
d = 100000.0
best = -1
r = trkpts.index
for i in r:
lati = trkpts.ix[i,'Lat']
loni = trkpts.ix[i,'Lon']
md = manhattan_distance1(lat, lon, lati, loni)
if d > md
best = i
d = md
return best
如果将 Manhattan_distance 函数体换进来,速度还可以快些:
def closest_manhattan_distance2(lat,lon,trkpts):
d = 100000.0
best = -1
r = trkpts.index
for i in r:
lati = trkpts.ix[i,'Lat']
loni = trkpts.ix[i,'Lon']
md = abs(lat-lati)+abs(lon-loni)
if d > md
best = i
d = md
return best
在计算的最短距离点上,用这个函数与用 John's 的函数效果相同。我希望我的直觉是对的。越简单就越快。现在这个程序用了 2 分 37 秒。提速了 18%。 很好,但还不够激动人心。
我决定正确使用 Python。这意味着要利用 pandas 支持的数组运算。这些数组运算操作源于 numpy 包。通过调用这些数组操作,代码实现更简练:
def closest(lat,lon,trkpts):
cl = numpy.abs(trkpts.Lat - lat) + numpy.abs(trkpts.Lon - lon)
return cl.idxmin()
该函数与之前函数的返回结果相同。在我的笔记本上运行时间花费了 0.5 秒。整整快了 300 倍! 300 倍,,也即30,000 %。不可思议。 提速的原因是 numpy 数组操作运算用 C 实现。因此, 我们将最好的两面结合起来了: 我们得到 C 的速度和 Python 的简洁性。
教训很明确:别用 C 的方式写 Python 代码。用 numpy 数组运算,不要用数组遍历。对我来说,这是思维上的转变。
Update on July 2, 2015。文章讨论在Hacker News。一些评论没有注意到(missed )我用到了 pandas 数据帧的情况。主要是它在数据分析中很常用。如果我只是要快速的查询最短距离点,且我时间充分,我可以使用 C 或 C++ 编写四叉树(实现)。
Second update on July 2, 2015。有个评论提到 numba 也能对代码提速。我就试了一下。
这是我的做法,与你的情况不一定相同。 首先,要说明的是,不同的 python 安装版,实验的结果不一定相同。我的实验环境是 windows 系统上安装 Anaconda,同时也安装了一些扩展包。可能这些包和 numba 存在干扰。.
首先,输入下面的安装命令,安装 numba:
$ conda install numba
这是我命令行界面上的反馈:
之后我发现,numba 在 anaconda 安装套件中已存在。 也可能安装指令有变更也说不定。
推荐的 numba 用法:
@jit
def closest_func(lat,lon,trkpts,func):
d = 100000.0
best = -1
r = trkpts.index
for i in r:
lati = trkpts.ix[i,'Lat']
loni = trkpts.ix[i,'Lon']
md = abs(lat - lati) + abs(lon - loni)
if d > md:
#print d, dlat, dlon, lati, loni
best = i
d = md
return best
我没有发现运行时间提高。我也尝试了更积极的编译参数设置:
@jit(nopython=True)
def closest_func(lat,lon,trkpts,func):
d = 100000.0
best = -1
r = trkpts.index
for i in r:
lati = trkpts.ix[i,'Lat']
loni = trkpts.ix[i,'Lon']
md = abs(lat - lati) + abs(lon - loni)
if d > md:
#print d, dlat, dlon, lati, loni
best = i
d = md
return best
这次运行代码时,出现一个错误:
看来,pandas 比 numba 处理代码更智能。
当然,我也能花时间修改数据结构,使 numba 能正确编译(compile)。可是,我为什么要这么干呢? 用 numpy 写的代码运行的足够快了。反正,我一直在用 numpy 和 pandas 。为什么不继续用呢?
也有建议我用pypy。这当然有意义,不过…我用的是托管服务器上的 Jupyter notebooks(注,在线浏览器的 python 交互式开发环境)。我用的是它提供的 python 内核,也即,官方的(regular)Python 2.7.x 内核。并没有提供 Pypy 选择。
也有建议用 Cython。好吧,如果我回头要编译代码 ,那我干脆直接用 C 和 C++ 就好了。我用 python,是因为,它提供了基于 notebooks(注:网页版在线开发环境)的交互式特性,可以快速原型实现。这却不是 Cython 的设计目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23