京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代和金融的模糊未来
“大数据”一旦后缀上“时代”二字,一股开拓、奋进的情绪就会扑面而来。掌握大数据,将使我们从繁杂而模糊的世界里,找到确定的方向。掌握大数据、运用大数据,将给我们提供一种可能——可以不依靠直觉、经验和勇气来应对令人深惧、更令人渴望的未来。从这个角度讲,在充满不确定和利用不确定赚取高额利润的金融界,他们以激动心情拥抱大数据和大数据时代,则是合情合理的必然之举。
大数据与互联网金融时代
金融作为一个独立发展的产业,它所能买|卖的产品,就是信用。决定信用多寡和高低的,是对未来不确定性的判断。收集大数据,再运用合理、合适的计算方法,就可以从海量的数据中发现未来发展的方向。人类自古以来始终在做类似的事情,只是很多时候受制于计算方法、计算工具。
计算机发明后使处理海量数据成为可能。互联网的发展使海量数据的收集成本被降到可接受的程度,人们可以运用互联网收集数据,再运用高超的计算公式,判断出广泛人群或特定人群的心理倾向、消费习惯等商业价值极高的信息。
我国的金融结构长期失衡,银行的地位远远压过资本市场。尽管今天资本市场正在突飞猛进,但间接融资依然是市场资金来源的主流。银行把控的金融市场,必然弥漫着抵押文化,金融市场的宠儿是抵押物。基于个人或者群体信用的金融市场,始终难以大放异彩,甚至在抵押文化下,个人或群体信用要么被关进“俱乐部”,要么则很可能被妖魔化,成为各种法条律令的监控对象。
当大数据收集和处理的成本足够低时,以阿里巴巴为代表的互联网金融,以P2P为特征的互联网信贷模式,正在打破银行信用信息的垄断,以低廉的成本自创出一套与银行无关的个人或者群体信用信息系统,从而使金融真正走出高高在上的“庙堂”,与群众“打成一片”。
大数据下的银行业危机
互联网金融借助大数据和运用大数据的作业系统,最大程度地解决了信息不对称问题,从而最大限度地降低其因对客户信用甄别缺乏有效工具而带来的风险。然而,运用大数据的作业系统,并非大数据时代的最大难题,最大难题是如何收集到可用或者说符合在现有思维模式下创立的计算公式的那些大数据。显然,阿里巴巴等规模较大的电商已经占据先机,这些电商经过长期的积累,手上掌握了大量中小微企业的信息,同时,也掌握这些中小微企业用户的信息。利用这一平台,电商既能对消费市场做到“春江水暖鸭先知”,又能对可授信企业的风险做出准确判定,而这依然不是电商将成为大数据时代下金融业巨头的最主要理由,关键理由在于阿里巴巴等体量巨大的电商已经或者说有望影响生产和消费的倾向,他们从被动的观察者和接受者,演变成主动的创造者和引领者。互联网金融成为他们在中国经济里翻云覆雨的重要利器和法宝。
与草根性十足的互联网金融相比,一身贵族气的银行业显然将陷入极大的困窘之中。银行业对金融信息的垄断一旦丧失,距离他们从主角沦为配角的时间就不远了。但一些研究者认为,银行依然可以发挥资金、人才等方面的传统优势,将危局消于无形之中。也就是说,银行业可以利用网络上的大数据,或者说自己沉淀下来的数据,发展类似P2P的业务,和互联网金融一争高下,胜算非常大。
然而,这看似非常符合逻辑的推断却很难成立。举个例子,在余额宝突飞猛进时,各家银行陆续推出了类似余额宝的产品,但由于没有类似电商的平台,“银行版”的“余额宝们”除了证明其存在外,其实并没有引起金融江湖多大的波澜,反倒更加凸显出银行业在互联网金融面前的无力感。
因此,在大数据时代来临之际,在互联网金融步步紧逼之下,传统的银行业很可能将失去招架之力,中国的金融也将陷入极大危机,一旦处理不当,即使互联网金融势头发展迅猛,也难逃被传统金融带入万劫不复深渊的命运。
不过,我们可以预料但不愿意看到的是,传统银行业将再次以规避金融风险的名义,以讨伐的姿态,“挟天子以令诸侯,奉天子以令不臣”。如果这次庙堂向江湖的进攻,以这样的面貌开场,即使取胜或者稳固其既有领地,却让人情何以堪呢?这样的事很可能发生,这样的未来不要大数据,仅凭直觉也能猜到。
一个动荡而模糊的时代
今年3月份,依托货币基金发展的余额宝承受了来自传统金融业,或者说银行业的猛烈质疑和挤压,以至于中国人民银行等部门因为发出两份治理互联网金融的文件,也被拖下水,成为互联网金融拥趸们指责的对象。这场口水仗刚刚淡出人们的视野,“大数据”就呼啸而来,这次以“大数据”为靠山,以P2P为武器的互联网金融集体反攻,从技术层面看,银行业确实已陷入危机重重的被动境地。
但既然中国的银行业因个大、体沉而几乎到了不可倒、不能倒的地步,那么,互联网金融这种迅猛反攻势必会受到有关部门的极大关注。当前,互联网金融挟大数据之威在金融市场上并没有占据高地,从余额宝近几个月的业绩看,由于央行货币宽松政策,使货币基金的收益率急速下降,在银行间拆借市场上赚取高额回报的时代暂时过去了。而“余额宝”们却并未及时开发出另类的金融产品,在金融市场上获取新的领地。而尽管P2P发展迅猛,但积累还不足,数据存量严重短缺,特别是真正支撑大数据作业系统的数据平台,依然处在一盘散沙的状态中,而电商们深度开发自身的数据资源的动作正处于探索阶段。因此,互联网金融自身在模式和体系上还不成形,各种缺点依然很多。当有关部门以严肃、忧虑、质疑的态度关注它时,它也很可能和银行业一样陷入另一个困境。因此,双方在一段时间内很难真正交上手,而只能各据疆土,心怀忐忑地注视对方。
种种迹象表明,中国的金融市场进入了一个动荡而模糊的时代。在这个时代,我们看到了危机,也看到了开始,但也许我们很难猜出最后的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26