
R语言读取空间数据
空间数据类型主要包括了三种:矢量数据(以最普遍的的shapefile为例),栅格(raster,这个格式就比较多了,不过大同小异),地理数据库(geodatabase也就是.gdb文件,Esri的数据库),本文对运用R语言读取矢量数据和栅格数据进行总结
一、矢量数据
矢量数据其实主要包括了三类:点,线和面,能读取的方式有很多种。
下面列举几种。
(1)使用maptools包读取数据
先从点线面分别读取的方式来看,主要包括readShapePoints(读取点),readShapeLines(读取线要素),readShapePoly(读取面要素)。这几个函数都是maptools包里面的。
所以第一步如果没安装的话请先安装。
install.packages(‘maptools’)
library(maptools)
接着定位到我们所需读取数据的工作路径上,然后就可以开始读取对应的数据了。
#设置工作路径
getwd()
setwd("C:/Users/HuFeiHu/Documents/HeiHe")
#使用可以读取三类要素Poly,Points,Lines的函数读取矢量数据
library(maptools)
X<-readShapeSpatial('data/MiddleNodeType/SoilNET.shp',verbose = TRUE)
plot(x)
#分别使用可以读取Poly的函数读取
y<-readShapePoints('data/UpperBondary/Babaohe_Booundary.shp')
y<-readShapeLines('data/UpperBondary/Babaohe_Booundary.shp')
y<-readShapePoly('data/UpperBondary/Babaohe_Booundary.shp')
如果不需要什么其他操作,读取数据只需要填入文件名字作为传入的参数即可。这几个函数完整的参数大体差不多,主要包括下面几个。
fn——文件名,一般能读的是.shp文件,.shx文件和.dbf文件
proj4string = CRS(as.character(NA))——坐标系的CRS字符串,关于坐标系的问题,这里不详讲。其实就是一个坐标系对应一个ID,把对应ID读进去,按照对应坐标系读取,这个是遵循规范的。
一般前两个参数用得多。后面这些只介绍这三个函数共有的参数,其他参数就请参照帮助文档。
verbose = FALSE——默认为False,这个主要是在读取数据后是否返回读入要素的类型和数量。
repair=FALSE——这个参数的话,主要是考虑到.shx索引文件太大,默认False会跳过读取数据,TRUE的话,会进行内部修复,读取这类文件。
事实上,maptools提供的函数读取只能传输较差分辨率的空间数据,所以更推荐的是用rgdal包的OGR驱动程序来读取。
(2)使用GDAL的R语言包rgdal读取矢量数据,这种方法也能够读取高精度数据(推荐使用)
读取方式如下,参数也是传入文件名即可简单读取,不过这个参数可以读具体文件也可以读文件夹名。对应上面proj4string也有一个参数p4s,其他参数参照文档。
library(rgdal)
rgdaltest<-readOGR('data/MiddleNodeType/SoilNET.shp')
plot(rgdaltest)
(3)使用shapefiles包读取数据文件
此外还有shapefiles包也可以进行读取。读取方式(可以读取shp和shx,shx读取结果为空间索引)如下:
library(shapefiles)
x<-read.shp('data/UpperBondary/Babaohe_Booundary.shp')
矢量数据读取主要通过以上几种方式就可以实现。
栅格数据的话,格式还是多种多样的。这边主要提供几种不同格式的读取方法(.img文件,.tif文件,ASCII码文件和.asc文件)。
(1)使用GDAL的rgdal包
栅格数据读取主要是基于rgdal包,读取方式如下,img和tif都可以通过readGDAL直接读取。
data<-readGDAL(“data/UpperBondary/Babaohe_Booundary.img”)
data<-readGDAL(“data/UpperBondary/Babaohe_Booundary.tif”)
这里面的参数我就不详细介绍了,主要解释几个个人认为比较重要的参数。有兴趣的同学可以去查询官方文档。
band——波段数,单纯栅格无所谓。做遥感影像数据处理时就会遇到需要几个波段的问题,如果缺省的话,是全部导入。
p4s——等同于上面的proj4string
type——像素深度:8bit,16bit等
读取ASCII码文件存储的数据
rastershange1=readGDAL('rasterTest/test.txt')
plot(rastershange1)
(2)用raster包读取栅格数据
通过raster包进行读取.img文件和.tif文件,这个更方便些。读取方式如下
data<-raster(“data/UpperBondary/Babaohe_Booundary.image”)
data<-raster(“data/UpperBondary/Babaohe_Booundary.tif”)
(3)运用sp包读取ASCII码文件
当然栅格数据还有较为普遍的以ASCII码文件存储的方式。这里也提供下如何读取ASCII码文件,这个方法是基于sp包的,所以需要先安装和载入sp包,这个包是R语言空间数据的基础包,指定了空间数据库的方法和对象。
rastershange2=read.asciigrid('rasterTest/test.txt')
plot(rastershange2)
当然ASCII码文件可能是以.asc文件存储的,只需把后缀名改成.asc即可读取。
运用R语言读取栅格和矢量数据的方法大概如上了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15