R语言读取空间数据
空间数据类型主要包括了三种:矢量数据(以最普遍的的shapefile为例),栅格(raster,这个格式就比较多了,不过大同小异),地理数据库(geodatabase也就是.gdb文件,Esri的数据库),本文对运用R语言读取矢量数据和栅格数据进行总结
一、矢量数据
矢量数据其实主要包括了三类:点,线和面,能读取的方式有很多种。
下面列举几种。
(1)使用maptools包读取数据
先从点线面分别读取的方式来看,主要包括readShapePoints(读取点),readShapeLines(读取线要素),readShapePoly(读取面要素)。这几个函数都是maptools包里面的。
所以第一步如果没安装的话请先安装。
install.packages(‘maptools’)
library(maptools)
接着定位到我们所需读取数据的工作路径上,然后就可以开始读取对应的数据了。
#设置工作路径
getwd()
setwd("C:/Users/HuFeiHu/Documents/HeiHe")
#使用可以读取三类要素Poly,Points,Lines的函数读取矢量数据
library(maptools)
X<-readShapeSpatial('data/MiddleNodeType/SoilNET.shp',verbose = TRUE)
plot(x)
#分别使用可以读取Poly的函数读取
y<-readShapePoints('data/UpperBondary/Babaohe_Booundary.shp')
y<-readShapeLines('data/UpperBondary/Babaohe_Booundary.shp')
y<-readShapePoly('data/UpperBondary/Babaohe_Booundary.shp')
如果不需要什么其他操作,读取数据只需要填入文件名字作为传入的参数即可。这几个函数完整的参数大体差不多,主要包括下面几个。
fn——文件名,一般能读的是.shp文件,.shx文件和.dbf文件
proj4string = CRS(as.character(NA))——坐标系的CRS字符串,关于坐标系的问题,这里不详讲。其实就是一个坐标系对应一个ID,把对应ID读进去,按照对应坐标系读取,这个是遵循规范的。
一般前两个参数用得多。后面这些只介绍这三个函数共有的参数,其他参数就请参照帮助文档。
verbose = FALSE——默认为False,这个主要是在读取数据后是否返回读入要素的类型和数量。
repair=FALSE——这个参数的话,主要是考虑到.shx索引文件太大,默认False会跳过读取数据,TRUE的话,会进行内部修复,读取这类文件。
事实上,maptools提供的函数读取只能传输较差分辨率的空间数据,所以更推荐的是用rgdal包的OGR驱动程序来读取。
(2)使用GDAL的R语言包rgdal读取矢量数据,这种方法也能够读取高精度数据(推荐使用)
读取方式如下,参数也是传入文件名即可简单读取,不过这个参数可以读具体文件也可以读文件夹名。对应上面proj4string也有一个参数p4s,其他参数参照文档。
library(rgdal)
rgdaltest<-readOGR('data/MiddleNodeType/SoilNET.shp')
plot(rgdaltest)
(3)使用shapefiles包读取数据文件
此外还有shapefiles包也可以进行读取。读取方式(可以读取shp和shx,shx读取结果为空间索引)如下:
library(shapefiles)
x<-read.shp('data/UpperBondary/Babaohe_Booundary.shp')
矢量数据读取主要通过以上几种方式就可以实现。
栅格数据的话,格式还是多种多样的。这边主要提供几种不同格式的读取方法(.img文件,.tif文件,ASCII码文件和.asc文件)。
(1)使用GDAL的rgdal包
栅格数据读取主要是基于rgdal包,读取方式如下,img和tif都可以通过readGDAL直接读取。
data<-readGDAL(“data/UpperBondary/Babaohe_Booundary.img”)
data<-readGDAL(“data/UpperBondary/Babaohe_Booundary.tif”)
这里面的参数我就不详细介绍了,主要解释几个个人认为比较重要的参数。有兴趣的同学可以去查询官方文档。
band——波段数,单纯栅格无所谓。做遥感影像数据处理时就会遇到需要几个波段的问题,如果缺省的话,是全部导入。
p4s——等同于上面的proj4string
type——像素深度:8bit,16bit等
读取ASCII码文件存储的数据
rastershange1=readGDAL('rasterTest/test.txt')
plot(rastershange1)
(2)用raster包读取栅格数据
通过raster包进行读取.img文件和.tif文件,这个更方便些。读取方式如下
data<-raster(“data/UpperBondary/Babaohe_Booundary.image”)
data<-raster(“data/UpperBondary/Babaohe_Booundary.tif”)
(3)运用sp包读取ASCII码文件
当然栅格数据还有较为普遍的以ASCII码文件存储的方式。这里也提供下如何读取ASCII码文件,这个方法是基于sp包的,所以需要先安装和载入sp包,这个包是R语言空间数据的基础包,指定了空间数据库的方法和对象。
rastershange2=read.asciigrid('rasterTest/test.txt')
plot(rastershange2)
当然ASCII码文件可能是以.asc文件存储的,只需把后缀名改成.asc即可读取。
运用R语言读取栅格和矢量数据的方法大概如上了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03