
云计算与大数据环境下的数据集成能力建设的关键条件
随着企业业务的增长,伴随企业各类应用系统逐步启用,结果导致数据量几何级数的增长,传统的整合数据的方式正在受到挑战,于此同时,云计算及网上应用在企业内部产生各类结构化、非结构化数据,这些数据所蕴含的信息(尤其是非结构化数据)是传统分析工具无法捕捉的。本文主要阐述在企业信息化过程中,数据整合的能力建设所需要考虑的一些关键问题。
从根本来说,企业信息化的目的是为了降低沟通成本、提高工作效率、增强科学决策能力,从手段上是将分散、无序、无时效的数据变成有序、可分享、有时效、可追溯的数据,前者数据过渡到后者数据,就是无信息(或不可信信息)变成可信信息的过程。数据蕴含的信息有两类:1、交易信息,即某一条/或几条数据本身所包含的信息;2、统计信息,即数据集合所蕴含的规律性信息。下图表现了交易数据与统计数据的关系和传统架构方法,即ETL模型。
图1:典型传统数据仓库架构
传统整合基本上是基于ETL模式,即从企业内部的信息系统中抽取(Extract),然后根据预先定义的方式转换(Transform),最后载入到企业的数据仓库(Load),大部分企业的ETL程序定义在每天晚上运行,这类的方法有以下问题:
1、数据仓库的数据不是实时的信息
2、如果内部信息系统数据量很大,ETL处理时间不可能按时完成。
3、数据仓库的信息无法快速反馈数据到基层处理商务的人员,图示1中红色打叉的部分。
4、ERP本身在多年数据积累后,事务处理与订单查询都会变慢。
5、无法处理大数据,ETL的整个数据处理过程都是建立在已知/预定义的模型之上的,也就是ETL无法发掘到数据集蕴含的未知规律。
a)结构化大数据,除上述第2点外,针对大数据的深度挖据分析能力(非简单根据预先设计的模型做数据转换),传统的系统架构中是无法完成的。
b)非结构化、半结构化大数据。非架构化数据从本质上来讲,是企业无法预先定义规则的数据类型,据IDC的一项调查报告中指出:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。传统的方式是无法计算统计非结构化大数据包含的新类型统计信息。
根据上述问题,企业信息系统的数据整合的目标需要满足以下条件:
1、提高数据的质量
低质量的数据带来的问题:
1.1统计数据会有误导,误导的数据直接结果很可能是企业战略决策错误。
1.2基层人员工作效率低下。由于基层人员不信任数据,就会产生额外的工作去核对并验证。由于数据不准确也会产生更多的操作性错误,如:发货地址错误,货款核对产生歧义等。这些都会带来大量的额外工作,根据2/8原理,80%的额外工作都缘于20%的错误。
1.3无法根据信息系统记录做更多的分析统计,如6 Sigma类似的项目将无数据基础,项目无法推进。
2、数据安全:由于各类中间件的应用、云计算集成环境的广泛普及,数据源需要提供更广泛的数据输出的能力,与此同时,数据保护能力需要更加完善,传统在应用软件层面的保护方式是无法满足此类需求的。保护数据需要考虑:传输加密和身份认证。
3、与“云计算”的集成能力:在云计算环境里,无论是基础数据还是交易数据,将不仅限于某一种应用系统中使用,甚至数据很可能需要跨越公司的防火墙,与外部的云计算环境集成。
4、大数据能力:举个典型的例子,企业使用web日志、社交媒体(social media,如微博)数据分析大量客户的偏好,同时使用企业与客户已经成交的交易记录,建立更好的预测模型,更直接有效的市场推广或更好的客户体验。而上述的web日志和社交媒体的数据都是非结构化的大数据。
5、高性能/满足实时的要求:举个典型的贸易公司为例,该公司需要根据客户以往的信用记录决定是否订货或发货,如果没有实时统计能力,此类的商业模型在执行起来会困难重重。越来越多的企业希望将部分的决策过程下放到执行层面的基层,基层的决策需要实时的统计结果、可追溯的决策结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22